Investigación del flujo y transporte mediante experimentación a escala intermedia

I. Sánchez Fuster, L. López Chacón, José Esteban Capilla Romá

Resumen

Los experimentos en medio poroso heterogéneo llevados a cabo en tanque de laboratorio se han utilizado con frecuencia como herramienta para la formulación y la validación de aproximaciones a la modelación de diversos fenómenos que se dan en relación con el flujo y transporte en medios porosos. Históricamente, este tipo de modelos tuvieron un cierto auge para la investigación de los fenómenos de dispersión hidrodinámica en medios porosos a partir de mediados del siglo XX. En las dos últimas décadas la mejora de los sistemas de adquisición de datos, la disponibilidad de tecnologías asequibles y precisas de medición de presiones, de conductividades y de procesamiento de imágenes, además de la necesidad de investigar la modelización de problemas no resueltos de forma satisfactoria, han renovado el interés por esta forma de experimentación. Este artículo recoge una síntesis representativa de las investigaciones llevadas a cabo con modelos físicos de laboratorio, llamados ISE (Intermediate Scale Experiments), como opción para la investigación de procesos de flujo y transporte no-reactivo en medios porosos saturados. Se realiza un repaso de las principales características de este tipo de modelos físicos ilustrándose brevemente las características del prototipo de tanque de experimentación desarrollado en la Universidad Politécnica de Valencia para la investigación en 2D de fenómenos de dispersión en medios heterogéneos.

Texto completo:

PDF

Referencias

Aeby P., Schultze U., Braichotte D., Bundt M., Moser-Boroumand F., Wydler H. y Flühler H., (2001). Fluorescence imaging of tracer distribution in soil profiles. Environ. Sci. Technol. 35 (4), 753-760. https://doi.org/10.1021/es000096x

Barth G., Illangasekare T., Hill M. C. y Rajaram H., (2001). A new tracer-density criterion for heterogeneous porous media. Water Resources Research, 37(1), 21-31. https://doi.org/10.1029/2000WR900287

Barth G., Hill M., Illangasekare T. y Rajaram H., (2001). Predictive modelling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous medium. Water Resources Research, 37(10), 2503-2512. https://doi.org/10.1029/2001WR000242

Cápiro, N.L.et al., (2007). Fuel-grade etanol transport and impacts to groundwater in a pilot-scale aquifer tank. Water Resources Research, 41, 656-664. https://doi.org/10.1016/j.watres.2006.09.024

Catania, F., Massabò, M., Valle, M., Bracco, G. y Paladino, O., (2008). Assessment of quantitative imaging of contaminant distributions in porous media. Experiments in Fluids, 44(1), 166-177. https://doi.org/10.1007/s00348-007-0388-x

Chao H., Rajaram H. y Illangasekare T., (2000). Intermediate-scale experiments and numerical simulations of transport under radial flow in a tow-dimensional heterogeneous porous medium. Water Resources Research, 36(10), 2869-2884. https://doi.org/10.1029/2000WR900096

Christ, J.A. y Abriola, L.M., (2006). Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Advances in Water Resources, 30, 1547-1561. https://doi.org/10.1016/j.advwatres.2006.05.024

Conwell et al., (1997). Design of a piezometer network for estimation of the variogram of the hydraulic gradient: The role of the instrument. Water Resources Research, 33(11), 2489-2494. https://doi.org/10.1029/97WR01703

Dagan, G., (1984). Solute transport in heterogeneous porous formations. Journal of Fluid Mechanics, 145, 151-177. https://doi.org/10.1017/S0022112084002858

Dagan, G. y Fiori, A., (1997). The influence of pore-scale dispersion on concentration statistical moments in transport through heterogeneous aquifers. Water Resources Research, 33, 1595-1606. https://doi.org/10.1029/97WR00803

Daily W. y Owen E., (1991). Cross-borehole resistivity tomography. Geophysics, 56, 1228-1235. https://doi.org/10.1190/1.1443142

Darcy, H., (1856). Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris.

Dunn, A.M. y Silliman S.E., (2003). Air and water entrapment in the vicinity of the water table. Groundwater, 41(6), 729-734. https://doi.org/10.1111/j.1745-6584.2003.tb02414.x

Elsner, M.M., (1994). Laboratory investigation of dispersion of dense, viscous, miscible fluids in one-dimensional, correlated, random porous media. Thesis, Drexel University, 182 pp.

Fernández-García, D., Illangasekare, T.H. y Rajaram, H., (2004). Conservative and sorptive forced-gradient and uniform flow tracer tests in a three-dimensional laboratory test aquifer. Water Resources Research, 40(10) W10103, doi:10.1029/2004WR003112.

Forrer I. y Papritz, A., (2000). Quantifying dye tracers in soil proFIles by image processing. European Journal of Soil Science, 51, 313-322. https://doi.org/10.1046/j.1365-2389.2000.00315.x

Frippiat, C., Servais, T., Conde, P., Talbaoui, M. y Holeyman, A., (2003). Medium-scale laboratory model to assess soil contaminant dispersivity. 13th European Conference on Soil Mechanics and Geotechnical Engineering, August 25-28, Praha, Czech Republic.

Gimmi T. y Ursino N., (2004). Mapping Material Distribution in a Heterogeneous Sand Tank by Image Analysis. Soil Science Society of America Journal, 68, 1508-1514. https://doi.org/10.2136/sssaj2004.1508

Glass, R.J. y Steenhuis T.S. y Parlange J.-Y., (1988). Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone. J. Cont. Hydrology, 3, 207-226. https://doi.org/10.1016/0169-7722(88)90032-0

Gramling, C., Meigs, L. y Harvey, C.F., (2002). Reactive transport in porous media: a comparison of modelprediction with laboratory visualization. Environ. Science Technology, 23, 2508-2514. https://doi.org/10.1021/es0157144

Huang, K., Torida, N. y Van Genuchten, M.Th., (1995). Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transport Porous Media, 18, 283-302. https://doi.org/10.1007/BF00616936

Irwin, N.C., Botz, M.M. y Greenkorn, R.A., (1996). Experimental investigation of characteristic length scales in periodic heterogeneous porous media. Transport Porous Media, 25, 235-246. https://doi.org/10.1007/BF00135858

Jalbert, M., Dane, J. y Bahaminykamwe, L., (2003). Influence of porous medium and NAPL distribution heterogeneities on partitioning inter-well tracer tests: a laboratory investigation. Journal of Hydrology, 272, 79-94. https://doi.org/10.1016/S0022-1694(02)00256-1

Levy, M. y Berkowitz, B., (2003). Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. Journal of Contaminant Hydrology, 64, 203-226. https://doi.org/10.1016/S0169-7722(02)00204-8

Liu, S., Yeh, T.-C.J. y Gardiner, R., (2002). Effectiveness of hydraulic tomography: Sandbox experiments. Water Resources Research, 38(4), 1034, doi:10.1029/2001WR000338.

Massabò, M. y Catania, F. y Paladino, O., (2007). A New Method for Laboratory Estimation of the Transverse Dispersion Coefficient. Groundwater, 45(3), 339-347. https://doi.org/10.1111/j.1745-6584.2007.00301.x

McNeil, J.D., Oldenborger, G.A. y Schincariol, R.A., (2006). Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. Journal of Contaminant Hydrology, 84, 36-54. https://doi.org/10.1016/j.jconhyd.2005.12.005

Neuman, S.P. y Zhang Y.K., (1990). A quasi-linear theory of non-FIckian and Fickian subsurface dispersion. 1. Theoretical analysis with application to isotropic media. Water Resour. Res., 26, 887-902. https://doi.org/10.1029/WR026i005p00887

Nicholl, M.J., Glass, R.J. y Nguyen, H.A., (1992). Gravity-driven FIngering in unsaturated fractures. Proc Third Annual Int Conf on High Level Radioactive Waste Management, Las Vegas, Nevada.

Oates, P., Castenson, C., Harvey, C.F. y Polz, M., (2005). Illuminating reactive microbial transport in saturated porous media: Demonstration of a visualization method and conceptual transport model. Journal of Contaminant Hydrology, 77, 233-245. https://doi.org/10.1016/j.jconhyd.2004.12.005

Oostrom, M., Hofstee, C., Walker, R. y Dane, J., (1999). Movement and remediation of trichloroethylene in a saturated heterogeneous porous medium. Journal of Contaminant Hydrology, 37, 159-178. https://doi.org/10.1016/S0169-7722(98)00153-3

Persson, M., (2005). Accurate dye tracer concentration estimations using image analysis. Soil Science Society of America Journal, 69 967-975. https://doi.org/10.2136/sssaj2004.0186

Rashidi, M., Peurrung, L., Tompson, A.F.B. y Kulp, T.J., (1996). Experimental analysis of pore-scale flow and transport in porous media. Advances in Water Resources, 19, 163-180. https://doi.org/10.1016/0309-1708(95)00048-8

Rovey, C.M. y Niemann, W.L., (2005). Do Conservative Solutes Migrate at Average Pore-Water Velocity?. Groundwater, 43(1), 52-62. https://doi.org/10.1111/j.1745-6584.2005.tb02285.x

Sánchez Fuster, I. y Capilla Romá, J.E., (2007). Desarrollo de un modelo físico de laboratorio de escala intermedia (ISE). Trabajo de investigación, Dpto. de Ing. Hidráulica y MMAA , Univ. Politécnica de Valencia, http://ttt.upv.es/issanfus/home.html.

Scheidegger, A.E., (1957). On the theory of flow of miscible phases in porous media. Proce. IUGG General Assembly, Toronto 2, 236-242.

Schincariol, R.A. y Schwartz, F.W., (1990). An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resources Research, 26, 2317-2329. https://doi.org/10.1029/WR026i010p02317

Silliman, S.E. y Simpson, E.S., (1987). Laboratory evidence of the scale eFFect in solute transport. Water Resources Research, 23(8), 1667-1673. https://doi.org/10.1029/WR023i008p01667

Silliman, S.E. y Frost, C., (1998). Monitoring Hydraulic Gradient Using Three-Point Estimator. J. Environmental Engineering, 124(6), 517-523. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:6(517)

Silliman, S.E. y Zheng, L., (1999). Comparison of observations from a laboratory model with stochastic theory: Initial analysis of hydraulic and tracer experiments. Transport in Porous Media, 42(1-2), 85-107. https://doi.org/10.1007/978-94-017-1278-1_5

Silliman S.E., Zheng, L. y Conwell, P., (1997). The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media. Hydrogeology Journal, 6(1), 166-177. https://doi.org/10.1007/s100400050142

Silliman S.E., (1996). The importance of the third dimension on transport through saturated porous media: case study based on transport of particles. Journal of Hydrology, 179, 181-195. https://doi.org/10.1016/0022-1694(95)02838-2

Skibitzke, H.E. y Robinson, G.M., (1963). Dispersion in ground water flowing through heterogeneous materials. U.S. Geol. Surv. Prof. Pap., 386(B), 1-3. https://doi.org/10.3133/pp386B

Smith, L. y Schwartz, F., (1980). Mass transport. 1. A stochastic analysis of macroscopic dispersion. Water Resources Research, 16, 303-313. https://doi.org/10.1029/WR016i002p00303

Sternberg, S.P.K., Cushman, J.H. y Greenkorn, R.A., (1996). Laboratory observation of non-local dispersion. Transport Porous Media, 23, 135-151. https://doi.org/10.1007/BF00178123

Sun, N., Elimelech, M., Sun, N.Z. y Ryan, J., (2001). A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. Journal of Contaminant Hydrology, 49, 173-199. https://doi.org/10.1016/S0169-7722(00)00193-5

Szecsody, J.E., Zachara, J.M. y Bruckhart, P.L., (1994a). Adsorption-dissolution reactions aFFecting the distribution and stability of COIIEDTA in iron oxide-coated sand, Env. Sci. and Tech., 28, 1706-1716. https://doi.org/10.1021/es00058a024

Tompson, A.F.B. y Ababou, R., (1989). Implementation of the three-dimensional turning bands random FIeld generator. Water Resources Research, 25(10), 2227-2243. https://doi.org/10.1029/WR025i010p02227

Thullner, M., Mauclaire, L., Schroth, M., Kinzelbach, W. y Zeyer, J., (2002). Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow FIeld in saturated porous media. Journal of Contaminant Hydrology, 58, (2), 169-189. https://doi.org/10.1016/S0169-7722(02)00033-5

Ursino, N., Gimmi, T. y Flühler, H., (2001). Dilution of non-reactive tracers in variably saturated sandy structures. Adv. in Water Resources, 24, 877-885. https://doi.org/10.1016/S0309-1708(01)00014-8

Van Genuchten, M.Th. y Wierenga, P.J., (1976). Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions. Soil Science Society of America Journal, 40(4), 473-480. https://doi.org/10.2136/sssaj1976.03615995004000040011x

Welty, C.M. y Gelhar, L.W., (1991). Stochastic analysis of the eFFects of fluid density and viscosity variability on macrodispersion in heterogeneous porous media. Water Resources Research, 27, 2061-2075. https://doi.org/10.1029/91WR00837

Welty, C. y Gelhar, L.W., (1992). Simulation of large-scale transport of variable density and viscosity fluids using a stochastic mean model. Water Resources Research, 28, 815-827. https://doi.org/10.1029/91WR02931

Welty, C. y Elsner, M., (1997). Constructing correlated random FIelds in the laboratory for observations of fluid flow and mass transport. J. of Hydrology, 202, 192-211. https://doi.org/10.1016/S0022-1694(97)00066-8

Workman S. y Serrano S., (2005). Testing facility for evaluating groundwater storage and transport characteristics. Proyecto para la Universidad de Kentucky: http://www.bae.uky.edu/sb271/2000/proposals/00ppworkman.pdf.

Abstract Views

929
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia