Evaluación de ecuaciones de resistencia al flujo sobre escollera

Raúl López Alonso, J. Barragán Fernández, Mª Ángels Colomer Cugat

Resumen

Uno de los principales problemas que surgen a la hora de diseñar o analizar hidráulicamente cauces revestidos de escollera es la incertidumbre asociada a la estimación de los coeficientes de resistencia al flujo. El presente trabajo tiene por objeto contribuir a mejorar la capacidad predictiva delfactor de fricción de Darcy-Weisbach (f), mediante la evaluación (ajuste, validación y compración) de seis medelos de resistencia al flujo circualnte sobre escollera. Los modelos evaluados se fundamentan en leyes de distribución vertical de velocidad del flujo sobre lechos granulares: la ley logaítimica de Prandtl-Karman, su alternativa potencial y cuantro ecuaciones propustas para flujo macrorrugoso. La base empírica se halla integrada por 236 datos tomados en canales de campo y de laboratorio que reúnen características hidráulicas granulamétricas identificables con revestimientos de escollera. Se concluye que las ecuaciones para flujo macrorrugoso logran el mejor ajuste global, aunque sin destacar excesivamente del resto; mientras que los resultados de la validación permiten avalar la precisión de la capacidad predictiva de los modelos ajustados.

Palabras clave

Resistencia al flujo; Factor de fricción; Escollera

Texto completo:

PDF

Referencias

Aberle, J., Smart, G.M. (2003). The influence of roughness structure on flow resistance on steep slopes. Journal of Hydraulic Research. 41, 3: 259-269. https://doi.org/10.1080/00221680309499971

Abt, S.R., Wittler, R.J., Ruff, J.F., Khattak, M.S. (1988). Resistance to flow over riprap in steep channels. Water Resources Bulletin. 24, 6: 1193-1200. https://doi.org/10.1111/j.1752-1688.1988.tb03038.x

Aguirre-Pe, J., Fuentes, R. (1990). Resistance to flow in steep rough streams. Journal of Hydraulic Engineering. 116, 11: 1374-1386. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:11(1374)

Bathurst, J.C., Li, R.M., Simons, D.B. (1981). Resistance equation for large-scale roughness. Journal of the Hydraulics Division. 107, 12: 1593-1613.

Bathurst, J.C. (1993). Flow resistance through the channel network. Beven, K., Kirkby, M.J. (Eds.) Channel network hydrology. Wiley, pp 69-98.

Burkham, D.E., Dawdy, D.R. (1976). Resistance equation for alluvial-channel flow. Journal of the Hydraulics Division.102, 10:1479-1489.

Cao, H.H. (1985). Résistance hydraulique d' un lit de gravier mobile à pente raide étude expérimentale. These nº 589 (1985). École Polytechnique Fédérale de Lausanne.

Chen, C.L. (1991). Unified theory on power laws for flow resistance. Journal of Hydraulic Engineering. 117, 3: 371-389. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(371)

Esbensen, K., Midtgaard, T., Schonkopf, S. (1994). Multivariate Analysis in Practice. CAMO AS.

Ferro, V., Giordano, G. (1991). Experimental study of flow resistance in gravel-bed rivers. Journal of Hydraulic Engineering. 117, 10: 1239-1246. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1239)

Ferro, V. (2003). Flow resistance in gravel-bed river channels with large-scale roughness. Earth Surface Processes and Landforms. 28: 1325-1339. https://doi.org/10.1002/esp.589

Hicks, D.M., Mason, P.J. (1991). Roughness characteristics of New Zealand rivers. New Zealand Water Resources Survey, DSIR Marine and Freshwater, Wellington.

Katul, G., Wiberg, P., Albertson, J., Homberger, G. (2002). A mixing layer theory for flow resistance in shallow streams. Water Resources Research. 38, 11: 32(1-8). https://doi.org/10.1029/2001WR000817

Kellerhals, R. (1967). Stable channels with gravel-paved beds. Journal of the Waterways and Harbors Division. 93, 1: 63-84.

Limerinos, J.T. (1970). Determination of the Manning coefficient from measured bed roughness in natural channels. Water Supply Paper 1898-B, U.S. Geological Survey, Washington.

Martín-Vide, J. (2002). Ingeniería de ríos. Edicions Universitat Politecnica de Catalunya. Barcelona.

Maynord, S. (1991). Flow resistance of riprap. Journal of Hydraulic Engineering.117, 6: 687-696. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:6(687)

Nikora, V., Goring, D. (2000). Flow turbulence over fixed and weakly mobile gravel beds. Journal of Hydraulic Engineerig. 126, 9: 679-690. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:9(679)

O'Loughlin, E.M., McDonald, E.C. (1964). Some roughness concentration effects on boundary resistence. La Houille Blanche. 7: 773-785. https://doi.org/10.1051/lhb/1964042

Peña, D. (1987). Estadística. Modelos y métodos. Alianza Universidad. Madrid.

Pyle, R., Novak, P. (1981). Coefficient of friction in conduits with large roughness. Journal of Hydraulic Research. 19, 2: 119-139. https://doi.org/10.1080/00221688109499522

Rickenrnann, D. (1990). Bedload transport capacity of slurry flows at steep slopes. Mitteilung VAW 103. Zürich.

Rosso, M., Schiara, M., Berlamont, J. (1990). Flow stability and friction factor in rough channels. Journal of Hydraulic Engineering. 116, 9: 1109-1118. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:9(1109)

Smart G.M., Jaeggi, M. (1983). Sediment transport on steep slopes. Mitteilung VAW. 64. Zürich.

Smart, G.M., Duncan, M.J., Walsh, J.M. (2002). Relatively rough flow resistance equations. Journal of Hydraulic Engineering. 128, 6: 568-578. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(568)

Song, T., Graf, W.H., Lemmin, U. (1994). Uniform flow in open channels with movable grave! bed. Journal of Hydraulic Research. 32, 6: 861-875. https://doi.org/10.1080/00221689409498695

SPSS (2003). SPSS 11.5 Syntax reference guide: base system, regression models, advanced models. SPSS Inc.: Chicago.

Thompson, S.M., Campbell, P.L. (1979). Hydraulics of a large channel paved with boulders. Journal of Hydraulic Research.17,4: 341-354. https://doi.org/10.1080/00221687909499577

Wang, Z.Y., Larsen, P. (1994). Turbulent structure of water and clay suspensions with bed load. Journal of Hydraulic Engineering. 120, 5: 577-600. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:5(577)

Wang, Z.Y., Larsen, P., Nestmann, F., Dittrich, A. (1998). Resistance and drag reduction of flows of clay suspensions. Journal of Hydraulic Engineering. 124, 1: 41-49. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(41)

Wiberg, P.L., Smith, J.D. (1991). Velocity distribution and bed roughness in high-gradient streams. Water Resources Research. 27, 5: 825-838. https://doi.org/10.1029/90WR02770

Williams, G.P. (1970). Flume width and water depth effects in sediment transport experiments. Geological Survey Projessional Paper. 562 H. Washington. https://doi.org/10.3133/pp562H

Abstract Views

844
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia