Simulación de flujos en canales abiertos con pendientes fuertes

Tarek M. Salaheldin, Jasmin Imran, M. Hanif Chaudhry

Resumen

En el presente artículo se discute la simulación de flujos en canales abiertos con frentes pronunciados. Los métodos existentes en la literatura para representar este tipo de flujos son el método de las características, el de diferencias finitas, el de elementos finitos y el de volúmenes finitos. Se enuncian las ecuaciones de movimiento para el flujo en canales, promediadas verticalmente (para aguas someras) y transversalmente, haciéndose una breve discusión de las técnicas numéricas. Así mismo, se indican las condiciones iniciales y de contorno necesarias para completar la construcción de los modelos. Finalmente las técnicas anteriores son aplicadas al análisis de algunos problemas de flujo frecuentes en este campo.

Palabras clave

Onda de choque; Bore; Ecuaciones determinantes; Características; Diferencias finitas; Elementos finitos; Volúmenes finitos; Aplicaciones; Zonas áridas; Zonas semiáridas; Procesos hidrológicos; Modelos matemáticos; Ciclo hidrológico

Texto completo:

PDF

Referencias

Akanbi, A. A., and Katopodes, N. D., Model for Flood Propagation on Initially Dry land, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 7, pp. 689, 706, 1988. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(689)

Alcrudo, F., and Garcia-Navarro, P., A High-Resolution Godunov-Type Scheme in Finite Volumes for the 2-D shallow Water Equations, International Journal of Numerical Methods in Fluids, vol. 16, pp 489-505, 1993. https://doi.org/10.1002/fld.1650160604

Anderson, D. A., Tannehill, J. D., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York, 1984.

Bagge, G., and Herbich, J. B., Transitions in Supercritical Open Channel Flow, Journal of Hydraulic Division, ASCE, Vol. 93, No. 5, pp. 23-41, 1967.

Baker, J. A., Finite Element Computational Fluid Dynamics, McGraw Hill, New York, NY, 1983. https://doi.org/10.2514/6.1983-1918

Basco, D. R., Introduction to Rapidly Varied Unsteady Free Surface Flow Computations, Water Resources Investigation Report, No. 83-4284, 1983.

Beam, R. M., and Warming, R. F., An Explicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form, Journal of Computational Physics, vol. 22, pp. 87-110, 1976. https://doi.org/10.1016/0021-9991(76)90110-8

Bellos, C. V, Soulis, J. V., and Sakkas, J. G., Computation of two-Dimensional Dam-Break induced Flows, Advances in Water Resources, vol. 14, no. 1, 31-41, 1991. https://doi.org/10.1016/0309-1708(91)90028-M

Berger, R. C. Jr., A Finite Element Scheme for Shock Capturing, Technical Report, TR-93-12, U.S. Army Engineering Waterway Experiment Station, Vicksburg, Missorri, 1993.

Berger, R. C., and Stockstill, R. L., Finite Element Model for High-velocity Channels, Journal of Hydraulic Engineering, ASCE, vol. 121, no. 10, pp. 710-716, 1995. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:10(710)

Bhallamudi, S. M., and Chaudhry, M. H., Computation of Flows in Open-Channel Transitions, Journal of Hydraulic Research, vol. 1, pp. 77-93, 1992. https://doi.org/10.1080/00221689209498948

Chaudhry, M. H., Applied Hydraulic Transients, 2nd edition, Van Nostrand Reinhold, New York, N.Y., 1987.

Chaudhry, M. H., Open Channel Flow, Prentice Hall, Englewood Cliffs, NJ, 1993.

Chaudhry, M. H., Computation of Open-Channel Flows with Shocks, 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, Mechanical Engineering Publication Limited, BHR Group, UK, 1996

Chaudhry, M. H., and Barber, M. E., Open Channel Flow, The Handbook of Fluid Dynamics, Edited by Johnson, R. W., CRC Press, New York, NY, 1998.

Demuren, A. O., Prediction of Steady Surface-Layer Flows, Ph.D. thesis, University of London, 1979.

Fennema, R. J., and Chaudhry, M. H., Explicit Methods for Two-dimensional unsteady Transient Free-Surface Flows, Journal of Hydraulic Engineering, ASCE, vol. 116, no. 4, pp. 1013-1034, 1990. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:8(1013)

Garcia, R., and Kahawita, R. A., Numerical Solution of the St. Venant Equations with MacCormack Finite Difference Scheme, International Journal Numerical Methods in Fluids, 6, 259-274, 1986. https://doi.org/10.1002/fld.1650060502

Gharangik, A., and Chaudhry, M. H., Numerical Simulation of Hydraulic Jump, Journal of Hydraulic Engineering, ASCE, vol. 117, no. 9, pp. 1195-1211, 1991. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:9(1195)

Herbich, J. B., and Walsh, P., Supercritical flow in Rectangular expansions, Journal of Hydraulic Division, ASCE, vol. 98, no. 9, pp. 1691-1700, 1972.

Jimenez, O.F. and Chaudhry, M. H., Computation of Supercritical free Surface Flows, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 4, pp. 377-395, 1988. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:4(377)

Jameson, A., Schmidt, W., and Turkel, E., Numerical Solutions of Euler Equations by Finite Volume Methods using Runge-Kutta time-stepping Schemes, AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259, 1981. https://doi.org/10.2514/6.1981-1259

Katopodes, H., and Strelkoff, T., Computing Two-dimensional Dam-Break Flood Waves, Journal of the Hydraulics Division, ASCE, vol. 104, no. 9, pp.1269-1288, 1978.

Lee, J. K., and Froelich, D. C., Review of Literature on the Finite Element Solution of the equations of Two-di mensional Surface-Water Flow in Horizontal Plane, Circular:1009 U.S. Geological Survey, Denver, Colorado, USA, 1986. https://doi.org/10.3133/cir1009

Lax, P. D., and Wendroff, B., Systems of Conservation Laws, Com. Pure Applied Mathematics, 13:217-37, 1960. https://doi.org/10.1002/cpa.3160130205

Osher, S., and Solomone, F., Upwind difference Scheme for Hyperbolic Systems of Conservation Laws, Mathematical Computation, 38, pp. 339-374, 1982. https://doi.org/10.2307/2007275

Patankar, S. V., Karki, K. C., and Kelkar, K. M., Finite Volume Method, The Handbook of Fluid Dynamics, Edited by Johnson, R. W., CRC Press, New York, NY, 1998.

Pepper, D. W., and Baker, A. J., Finite Differences versus Finite Elements, in Handbook of Numerical Heat Transfer, W. J. Minkowycz, E. M. Sparrow, G. E. Schneider and R. H. Pletcher, Eds, John Wilye & Sons, New York, 1988.

Raman, A. and Chaudhry, M. H., Numerical Simulation of Hydraulic Jump, Proceeding, North America Water and Environment Congress 96, ASCE, 1996.

Stockstill, R. L., Berger, R. C., and Nece, R. E., Two-dimensional Flow Model for Trapezoidal High-velocity Channels, Journal of Hydraulic Engineering, ASCE, vol. 123, no. 10, pp. 844-852, 1997. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:10(844)

Stockstill, R. L., A Two-dimensional Free-surface Flow Model for Trapezoidal High-Velocity Channels, Ph.D. thesis, Department of Civil Engineering, University of Washington, Seattle, Washington, USA, 1995.

Spekreijse, S. P., Multigrid Solution of Steady Euler Equations, CWI Tract, Amsterdam, The Netherlands, 1988.

Tan, W., Shallo Water Hydrodynamics, Elsevier, Amsterdam, The Netherlands, 1992.

Thompson, J., Numerical Modeling of Irregular Hydraulic Jumps, Proceeding of Hydraulic Engineering Conference, ASCE, pp. 749-754, 1990.

Villegas, F., Design of the Punchina Spillway, Water Power Dam Construction, Nov. 32-34, 1976.

Younus, M., and Chaudhry, M. H., A Depth averaged k-(turbulence Model for the Computation of Free-Surface Flow, Journal of Hydraulic Research, vol. 23, no. 3, pp. 415-444, 1994. https://doi.org/10.1080/00221689409498744

Zhao, D. H., Shen, H. W., Tabios III, G. Q., Lai, J. S., and Tan, W. Y., A Finite Volume Two-dimensional Unsteady Flow Model for River Basins, Journal of Hydraulic Engineering, ASCE, vol. 120, no. 7, pp. 863-883, 1994. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(863)

Zhao, D. H., Shen, H. W., Lai, J. S., and Tabios III, G. Q. Approximate Riemann Solvers in FVM for 2D Hydraulic Shock Wave Modeling, Journal of Hydraulic Engineering, ASCE, vol. 122, no. 12, pp. 692-702, 1996. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:12(692)

Abstract Views

2069
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia