Consideraciones de diseño para la eliminación biológica de fósforo empleando procesos biopelícula

Autores/as

  • Pedro A. Castillo de Castro Universidad de Cantabria
  • Iñaki Tejero Monzón Universidad de Cantabria

DOI:

https://doi.org/10.4995/ia.1999.2779

Palabras clave:

Ingeniería del agua, Ingeniería civil, Ingeniería hidráulica

Resumen

El siguiente artículo es un resumen del estado del arte de la Eliminación Biológica de Fósforo (EBF) empleando procesos de biopelícula. En él se describen minuciosamente los mecanismos que intervienen en la eliminación biológica de este elemento, así como las teorías actualmente aceptadas. Se presentan los procesos biopelícula actualmente desarrollados, así como los consideraciones de diseño para reactores biopelícula, y la forma de trabajo necesaria para conseguir la EBF.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Pedro A. Castillo de Castro, Universidad de Cantabria

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente. Equipo de Biopelícula.

Iñaki Tejero Monzón, Universidad de Cantabria

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente. Equipo de Biopelícula.

Citas

Arun, V.; Mino, T. y Matsuo, T. (1988). Biological Mechanism of Acetate uptake mediated by Carbohydrate Consumption in excess Phosphorus Removal Systems. Wat. Res. 22 (5), pp. 565-570. https://doi.org/10.1016/0043-1354(88)90056-5

Barnard, J.L. (1984). Activated primary tanks for phosphate removal. Water SA 10 (3), pp. 121-126.

Beacham, A.M.; Seviour, R.J.; Lindrea, K.C. y Livinston, Y. (1990). Genospecies diversity of Acinetobacter isolates obtained from a Biological Nutrient Removal pilot plant of a modified UCT configuration. Wat. Res., 24 (1), pp. 23-29. https://doi.org/10.1016/0043-1354(90)90060-J

Belia, E. y Smith, P.G. (1997). The bioaugmentation of Sequencing Batch Reactor sludges for Biological Phosphorus Removal. Wat. Sci. Tech., 35 (1), pp. 19-26. https://doi.org/10.2166/wst.1997.0003

Bowker, R. y Stensel, H.D. (1990). Phosphorus Removal from Wastewaters. Pollution Technology Review Nº 189, Nowes Data Corporation, Park Ridge, New Jersey, U.S.A.

Cloete, T. E. y Steyn, P. L. (1988). The Role of Acinetobacter as a Phosphorus Removing Agent in Activated Sludge. Wat. Res. 22(8), pp. 971-976. https://doi.org/10.1016/0043-1354(88)90143-1

Comeau, P.; Day, M; Thomas, V. (1987). Dynamics of carbon reserves in biological dephosphatation of wastewaters. Rome, 1987. Pergamon Press, Oxford. https://doi.org/10.1016/B978-0-08-035592-4.50010-9

Comeau, Y.; Hall, K.H.; Hancock, R.E.W.; Olkham, W.K. (1986). Biochemical Model for Enhanced Biological Phosphate Removal. Water Research. 20(12). https://doi.org/10.1016/0043-1354(86)90115-6

Doria-Serrano, M.C.; González-Martínez, S. y Hernández-Esparza, M. (1992). Wat. Sci. Tech., 26, 2245-2248. https://doi.org/10.2166/wst.1992.0707

Eastman, J.A. y Ferguson, J.F. (1981). Solubilization of particulate organic carbon during the acid phase oj anaerobic digestion. Journal WPCF 53 (3), pp. 352-366.

Fuhs, G.W. y Chen, M. (1975) Microbiological basis of phosphate removal in the Activated Sludge Process for the Treatment of Wastewater. Microbial Ecol. 2, pp.119-138. https://doi.org/10.1007/BF02010434

Garzón-Zuñiga, M.A. y González-Martínez, S. (1996) Biological Phosphate and Nitrogen Removal in a Biofilm Sequencing Batch Reactor. Wat.Sci.Tech. 34 (1-2), pp. 293-301. https://doi.org/10.2166/wst.1996.0384

Goncalves, F.R. y Rogalla, F. (1992). Biological phosphorus removal in fixed films reactors. Wat. Sci. Tech. 25(12), pp. 165-174. https://doi.org/10.2166/wst.1992.0348

Goncalves, F.R.; Nogueira, F.N.; LeGrand, L. y Rogalla, F. (1994). Nitrogen and biological phosphorus removal in submerged biofilters. Wat. Sci. Tech. 30(11), pp. 1-12. https://doi.org/10.2166/wst.1994.0541

Goenestijn, J.W. y Deinema, M.H. (1985). Effects of Cultural Conditions on Phosphate Accumulation and Release by Acinetobacter Strain 210A. Proceedings of the Int. Conference, Management Strategies for Phosphorus in the Environment. Lisboa, Portugal, 1-4 julio.

González-Martinez, S. y Wilderer, P. (1991). Phosphate removal in a biofilm reactor. Wat. Sci. Tech. 23, pp. 1511-1521. https://doi.org/10.2166/wst.1991.0593

Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M.C. y Marais, G.vR. (1995). Activated Sludge Model No 2. IAWQ Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment Processes, International Association on Water Quality, 32 pages, ISBN 1-900222-00-0. https://doi.org/10.2166/wst.1995.0061

Iwai, S. y Kitao, T. (1994). Wastewater Treatment with Microbial Films. Technomic Publishing Company, Inc., 851 New Holland Ave., Box 3535, Lancaster, Penn., USA.

Johansson, P; Carlsson, H. y Jönsson, K. (1996). Modelling of the anaerobic reactor in a Biological Phosphate removal process. Wat. Sci. Tech. 34 (1-2), pp 49-55. https://doi.org/10.2166/wst.1996.0355

Kerrn-Jespersen, J.P y Henze, M. (1993). Biological Phosphorus uptake under Anoxic and Aerobic Conditions. Wat. Res. 27 (4). pp. 617-624. https://doi.org/10.1016/0043-1354(93)90171-D

Kerrn-Jespersen, J.P.; Henze, M. y Strube. R. (1994). Biological phosphorus release and uptake under alternating anaerobic and anoxic fixed-film reactor. Wat. Res. 28, pp. 1253-1255. https://doi.org/10.1016/0043-1354(94)90215-1

Liu, W-T.; Mino, T.; Matsuo. T. y Nakamura. K. (1996). Biological Phosphorus Removal Process: Effect of pH on Anaerobic substrate metabolism. Wat. Sci. Tech.,34 (1-2), pp. 25-32. https://doi.org/10.2166/wst.1996.0352

Marais, G.v.R.; Loewenthal, R.E. y Siebritz, I. (1983). Observations suporign phosphate removal by biological excess uptake. Wat. Sci. Tech. 15(3 4), pp. 15-41. https://doi.org/10.2166/wst.1983.0106

Muñoz-Colunga, A. y González-Martínez. S. (1996). Effects of Population Displacements on Biological Phosphorus Removal in a Biofilm SBR.Wat.Sci.Tech. 34 (1-2), pp. 303-313. https://doi.org/10.2166/wst.1996.0385

Nagashima, M. et al. (1979). Nitrification Denitrification Recycling System for Nitrogen and Phosphorus Removal from Fermentation WastewaterFermentation Tehcnology. 57(2).

Rabinowitz, B. y Oldham, W.K. (1986). Excess biological phosphorus removal in the activated sludge process using primary sludge fermentation. Can. J. Civ. Eng. 13, pp. 345-351. https://doi.org/10.1139/l86-047

Randal, C.; Barnard, J.; Stensel, HD. (1992). Desing and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal. Technomic Publishing Company Inc., ISNB 87762-922-6

Rovatti, M.; Nicolella, C.; Converti, A.; Chicliazza. R. y Di Felice, R. (1995). Phosphorus removal in fludized bed biological reactor (FBBR). Wat. Res. 29(12), pp. 2627-2634. https://doi.org/10.1016/0043-1354(95)00145-B

Ruiz-Treviño, F.A.; González-Martinez, S.; Doria-Serrano, C. y Hernández-Esparza, M. (1992). Phosphorus release kinetics in biofilm reactors. Wat. Sci. Tech. 26, 567-576. https://doi.org/10.2166/wst.1992.0436

Sedlak, R. (1991). Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and practice. 2° Ed., Richard I. Sedlak Editions. ISBN 0-87371-683-3

Skalsky, D.S. y Daigger, G.T. (1995). Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal. Water Environment Research 67 (2), pp. 230-237. https://doi.org/10.2175/106143095X131402

Tchobanoglous, G. y Burton, F.L. (1991). Wastewater Engineering: Treatment, Disposal and Reuse. Metcalf y Eddy, 3ª Edition, 1991.

Tracy, K.D. y Flammino, A. (1985). Kinetics of Biological Phosphorus removal. 58th Annual Conference WPCF, Kansas City, Missouri

USEPA (1987). Design Manual. Phosphorus Removal. EPA/625/1-87/001, September, 1987.

WEF y ASCE (1992). Design of Municipal Wastewater Treatment Plants: Volumes I and II. WEF Manual of Practice N° 8; ASCE Manual and Report on Engineering Practice N° 76.

Wentzel, M.C.; Ekama, G.A. y Marais, G.v.R. (1992). Processes and Modelling of Nitrification Denitrification Biological Excess phosphorus removal system: A review. Wat. Sci. Tech. 25 (6), 59-82. https://doi.org/10.2166/wst.1992.0114

Wentzel, M.C.; Lötter, L.H.; Loewnthal, R.E. y Marais. G.v.R. (1986). Metabolic Behavior of Acinetobacter spp. in Enhanced Biological Phosphorus Removal: A Biochemical Model. Water SA. 12 (4), 209-224.

Wentzel, M.C.; Lötter, L.H.; Ekama. G.A.: Loewenthal. R.E. y Marais, G.v.R. (1991). Evaluation of Biochemical Models for Biological Excess Phosphorus Removal. Wat.Sci.Tech., 23 (Kyoto), pp. 567-576. https://doi.org/10.2166/wst.1991.0506

Wentzel, M.C.; Dold, P.L.; Ekama, G.A. y Marais, G.v.G. (1985). Kinetics of biological phosphorus release. Wat. Sci. Tech., 17, pp. 57-71. https://doi.org/10.2166/wst.1985.0221

Descargas

Publicado

1999-03-31

Cómo citar

Castillo de Castro, P. A., & Tejero Monzón, I. (1999). Consideraciones de diseño para la eliminación biológica de fósforo empleando procesos biopelícula. Ingeniería Del Agua, 6(1), 69–80. https://doi.org/10.4995/ia.1999.2779

Número

Sección

Artículos