Tratamiento de efluentes acuosos contaminados con compuestos organoclorados

Beatriz Padilla Vivas, Fernando V. Díez Sanz, Salvador Ordóñez García

Resumen

Los compuestos organoclorados son un tipo de residuos que han adquirido especial relevancia en los últimos tiempos, debido a sus características tóxicas y peligrosas, tanto para el medio ambiente como para los seres humanos. Su especial peligrosidad ha potenciado la búsqueda de alternativas para su tratamiento en las distintas corrientes donde se presentan. En este artículo se describe la problemática real de este tipo de compuestos, se exponen los principales contaminantes y se muestra una visión general de las alternativas para la eliminación de estos organoclorados de corrientes acuosas, detallándose en profundidad una de las alternativas de eliminación consideradas: la hidrodecloración catalítica en fase acuosa.

Palabras clave

Compuestos organoclorados; Tratamientos del agua contaminada; Procesos avanzados de oxidación; Oxidación con aire húmedo; Degradación por métodos reductivos; Hidrodecloración catalítica; Catalizador de paladio soportado sobre carbón

Texto completo:

PDF

Referencias

Alejandre A., Medina F., Rodríguez X., Salagre P., Cesteros Y., Sueiras J. E. (2000). Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Appl. Catal. B. 30:195-207

Ali M., Sreekrishnan T. R. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research. 5:175-196. https://doi.org/10.1016/S1093-0191(00)00055-1

Aramendia M. A., Boráu V., García I. M., Jiménez C., Marinas A., Marinas J. M., Urbano F. J. (2002). Liquid-phase hydrodehalogenation of substituted chlorobenzenes over palladium supported catalysts. Appl. Catal. B.43:71-79. https://doi.org/10.1016/S0926-3373(02)00279-5

Araujo J. (1993). Naturaleza y Ecología en España. La Muerte Silenciosa. Ed. Círculo de Lectores

ATSDR. Agency for Toxic Substances and Disease Registry (2002). ToxFAQs™. EEUU.

Brauer H. (1985). Biotechnology Fundamentals of Biochemical Engineering. Volumen 2.

Buitrón G., González A., López-Martín L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology. 37:371-378. https://doi.org/10.2166/wst.1998.0670

Cuevas M. A. (1998). Jornadas sobre la contaminación de las aguas subterráneas: un problema pendiente. Valencia.

Cybulski, Trawczynski J. (2004). Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts. Appl. Catal. B. 47:1-13. https://doi.org/10.1016/S0926-3373(03)00327-8

Debellefontaine H., Foussard J. (1999). Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste management. 20:15. https://doi.org/10.1016/S0956-053X(99)00306-2

Energy Research Group (2003). Centre for Ecological Sciences, Bangalore, India.

EPA (1998). The inventory sources of chlorinated pollutants in the United States (EPA/600/P-98/002Aa).

EPA (1999). Integrated Risk Information System on 1,2,4-Trichlorobenzene.

EPA (2003). Ground water primer, EPA region 5 and Agricultural & Biological Engineering. Purdue University

Euro Chlor (2002). Chloroform in the environment; Marine Risk Assessments (www.eurochlor.org)

Felis V., Bellefon C., Fouilloux P., Schweich D. (1998). Hydrodechlorination and hydrodearomatisation of monoaromatic chlorophenols into cyclohexanol on Ru/C catalysts applied to water depollution: influence of basic solvent and kinetics of the reactions. Appl. Catal. B: Environ. 20:91-100. https://doi.org/10.1016/S0926-3373(98)00095-2

Fernández J., Maruthamuthu P., Kiwi J. (2004). Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. Journal of Photochemistry and Photobiology A: Chemistry. 161:185-192. https://doi.org/10.1016/S1010-6030(03)00293-4

Fortuny A., Bengoa C., Font J., Castells F., Fabregat A. (1999). Water pollution abatement by catalytic wet air oxidation in a trickle bed reactor. Catalysis Today. 53:107-114. https://doi.org/10.1016/S0920-5861(99)00106-6

Fritsch D., Kuhr K., Mackenzie K., Kopinke F. (2003). Hydrodechlorination of chloroorganics compounds in groundwater by Pd catalysts. Part 1. Development of polymer-based catalysts and membrane reactor tests. Catalysis Today. 82:105-118. https://doi.org/10.1016/S0920-5861(03)00208-6

García Ara L. J. (2002). Actuaciones para la minimización del impacto del vertido de sustancias peligrosas en la industria química. (www.eic.es)

Glaze W., Kenneke J., Ferry J. (1993). Chlorinated by-products from the TiO2-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environ. Sci. Technol. 27:177-184. https://doi.org/10.1021/es00038a021

Heinrichts B., Schoebrechts J. P., Pirard J. P. (2001). Palladium-silver sol-gel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene. Part III. Kinetics and reaction mechanism. Part IV. Deactivation mechanism and regeneration. Journal of Catalysis. 200:309-320. https://doi.org/10.1006/jcat.2001.3188

Hoke J. B., Gramiccioni G. A., Balko E. N. (1992). Catalytic hydrodechlorination of chlorophenols. Appl. Catal. B: Environ. 1:285-296. https://doi.org/10.1016/0926-3373(92)80054-4

Janssen D. B., Oppentocht J. E., Poelarends G. J. (2001). Microbial dehalogenation. Environmental Biotechnology. 12:254-258. https://doi.org/10.1016/S0958-1669(00)00208-1

Jechorek M., Wendlandt K. D., Beck M. (2003). Cometabolic degradation of chlorinated aromatic compounds. Journal of Biotechnology. 102:93-98. https://doi.org/10.1016/S0168-1656(03)00005-1

Kargi F., Eker S. (2004, in press, corrected proof). Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochemistry. https://doi.org/10.1016/j.procbio.2004.07.013

Kim Y. H., Carraway E. R. (2000). Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Tec. 34:2014-2017. https://doi.org/10.1021/es991129f

Kopinke F., Mackenzie K., Köhler R. (2002). Catalytic hydrodechlorination of groundwater contaminants in water and in the gas phase using Pd/Al2O3. Appl. Catal B: Environ. 1349:1-10. https://doi.org/10.1016/S0926-3373(03)00006-7

Kovenklioglu S., Cao Z., Farrauto R. J., Balko E. N. (1992). Direct catalytic hydrodechlorination of toxic organics in wastewater. AIChE J. 38:1003-1012. https://doi.org/10.1002/aic.690380704

Lin S. S., Chen C. L., Chang D. J., Chen C. & C. (2001). Catalytic wet air oxidation of phenol by various CeO2catalysts. Water research. 36:3009-3014. https://doi.org/10.1016/S0043-1354(01)00539-5

Lomnicki S., Lichtenberger J., Xu Z., Waters M., Kosman J., Amiridis M. D. (2003). Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Appl. Catal. B: Environ. 46:105-119. https://doi.org/10.1016/S0926-3373(03)00215-7

López E., Ordóñez S., Díez F. V. (2003). Inhibition effects of organosulphur compounds on the hydrodechlorination of tetrachloroethylene. Catalysis Today. 84:121-127. https://doi.org/10.1016/S0920-5861(03)00265-7

Lowry G. V., Reinhard M. (1999). Hydrodehalogenation of 1- to 3- carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environ. Sci. Technology.33:1905-1910. https://doi.org/10.1021/es980963m

Lowry G. V., Reinhard M. (2000). Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control and oxidative catalyst regeneration. Environ. Sci. Technology. 34:3217-3223. https://doi.org/10.1021/es991416j

Malato S., Blanco J., Vidal A., Richter C. (2002). Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl. Catal. B: Environ. 37:1-15. https://doi.org/10.1016/S0926-3373(01)00315-0

Matatov-Meytal Y. I., Sheintuch M. (1998). Catalytic abatement of water pollutants. Ind. Eng. Chem. Res. 37:309-326. https://doi.org/10.1021/ie9702439

Matatov-Meytal Y. I., Sheintuch M. (2000). Catalytic regeneration of chloroorganics-saturated activated carbon using hydrodechlorination. Ind. Eng. Chem.Res. 39:18-23. https://doi.org/10.1021/ie990484b

Matatov-Meytal Y. I., Sheintuch M. (2002). Hydrotreating processes for catalytic abatement of water pollutants. Catalysis Today. 75:63-67. https://doi.org/10.1016/S0920-5861(02)00045-7

Matheson L. J., Tratnyek P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technology. 28:2045-2053. https://doi.org/10.1021/es00061a012

McNab W. W., Ruiz R., Reinhard M. (2000). In-situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: testing and operational experiences. Environ. Sci. Technol. 34:149-153. https://doi.org/10.1021/es9903936

Ministerio de Medio Ambiente (2001). Medio Ambiente en España 2000. Ed. Direc. Gral. de Medio Ambiente.

Muftikian R., Fernando Q., Korte N. (1995). A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research. 29:2434-2439. https://doi.org/10.1016/0043-1354(95)00102-Q

Ordóñez S., Díez F. V., Sastre H. (2003). Hydrodechlorination of tetrachloroethylene over Pd catalysts: influence of process conditions on catalyst performance and stability. Appl. Catal. B. 40:119-130. https://doi.org/10.1016/S0926-3373(02)00146-7

Peres, J. A., Beltrán de Heredia J. (2004). Integrated Fenton’s reagent coagulation/flocculation process for the treatment of cork processing wastewaters. Journal of Hazardous Materials. 107:115-121. https://doi.org/10.1016/j.jhazmat.2003.09.012

Perrone L., Prati L., Rossi M. (1997). Removal of chlorinated organic compounds from water by catalytic dehydrohalogenation. Appl. Catal. B: Environ. 15:241-246. https://doi.org/10.1016/S0926-3373(97)00051-9

Portela J. R., Bernal J. L., Sanz E. N., Martínez de la Ossa E. (1997). Kinetics of wet air oxidation of phenol. Chem. Eng. J. 67:115-121. https://doi.org/10.1016/S1385-8947(97)00025-9

Rivas F. J., Kolaczkowski S. T., Beltrán F. J., McLurgh D. (1998). Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science. 53:2575-2586. https://doi.org/10.1016/S0009-2509(98)00060-8

Schmidt L. M., Delfino J. J., Preston J. F., St. Laurent G. (1999). Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater. Chemosphere. 38:2897. https://doi.org/10.1016/S0045-6535(98)00480-9

Schreier C. G., Reinhard M. (1995). Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water. Chemosphere. 31:3475-3487. https://doi.org/10.1016/0045-6535(95)00200-R

Schüth C., Disser S., Schüth F., Reinhard M. (2000). Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Appl. Catal. B: Environ. 28:147-152. https://doi.org/10.1016/S0926-3373(00)00171-5

Schüth C., Reinhard M. (1998). Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Appl. Catal. B: Environ. 18:215-221. https://doi.org/10.1016/S0926-3373(98)00037-X

Shindler Y., Matatov-Meytal Y. I., Sheintuch M. (2001). Wet hydrodechlorination of p-chlorophenol using Pd supported on an activated carbon cloth. Ind. Eng. Chem.Res. 40:3301-3308. https://doi.org/10.1021/ie001019d

Sweeny K. H. (1981). The reductive treatment of industrial wastewaters. AIChE Symp.Series. 77:67-78

Torrades F., Pérez M., Mansilla H. D., Peral J. (2003). Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents. Chemosphere. 53:1211-1220. https://doi.org/10.1016/S0045-6535(03)00579-4

Trabuco E., Ford P.C. (1999). Hydrodechlorination of 1,2-dichloroethane by rhodium catalysts under water gas shift reaction conditions. Journal of Molecular Catalysis A: Chemical. 148:1-7. https://doi.org/10.1016/S1381-1169(99)00034-5

Young K., Daniel J., Lewis S. (2002). Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnology and Bioengineering. 80:498-508. https://doi.org/10.1002/bit.10397

Yuan G., Keane M.A. (2003a). Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over carbon supported Pd: an evaluation of transport limitations Chemical Engineering Science. 58:257-267. https://doi.org/10.1016/S0009-2509(02)00476-1

Yuan G., Keane M.A. (2003b). Liquid phase catalytic hydrodechlorination of chlorophenols at 273 K. Catalysis Communications. 4:195-201. https://doi.org/10.1016/S1566-7367(03)00033-5

Yuan G., Keane M.A. (2003c). Catalyst deactivation during the liquid phase hydrodechlorination of 2,4-dichlorophenol over supported Pd: influence of the support. Catalysis Today. 88:27-36. https://doi.org/10.1016/j.cattod.2003.08.004

Abstract Views

3508
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Horseradish peroxidase modified electrode based on a film of Co–Al layered double hydroxide modified with sodium dodecylbenzenesulfonate for determination of 2-chlorophenol
Lenys Fernández, Isis Ledezma, Carlos Borrás, Luis Alfredo Martínez, Hermes Carrero
Sensors and Actuators B: Chemical  vol: 182  primera página: 625  año: 2013  
doi: 10.1016/j.snb.2013.02.109



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia