Estimación a corto plazo de la temperatura del agua. Aplicación en sistemas de producción en medio acuático

Juan Carlos Gutiérrez Estrada, Emiliano de Pedro Sanz, Rafael López Luque, Inmaculada Pulido Calvo

Resumen

El control y la predicción de parámetros físico-químicos del agua en tanques de cultivo de plantas de producción en medio acuático es un aspecto fundamental del buen funcionamiento de este tipo de instalaciones. En este trabajo se propone la estimación de la temperatura del agua en las próximas 24 horas en una planta de producción de anguilas europeas de carácter intensivo mediante regresiones múltiples y modelos univariantes de series temporales (modelos de suavizado y ARIMA). Se cuenta con datos de las temperaturas diarias en distintas series de tanques correspondientes a los años 1997 al 2001. Los modelos se calibran considerando exclusivamente la relación de los datos presentes y pasados de la temperatura, asumiéndose de esta forma que la variabilidad de otros factores que pueden influir en este parámetro está contenida en la propia serie de datos. Las mejores validaciones proporcionan niveles de varianza explicada en la mayor parte de los casos superiores al 95% y errores en la predicción inferiores a 1º C.

Palabras clave

Regresión múltiple; Análisis de series temporales; Modelos ARIMA; Temperatura; Acuicultura

Texto completo:

PDF

Referencias

Alcaraz, G. y S. Espina (1995) Acute toxicity of nitrite in juvenile grass carp modified by weight and temperature. Bulletin of Environmental Contamination and Toxicology, 55: 473-478. https://doi.org/10.1007/BF00206689

Allan, G.L. y G.B. Maguire (1991) Lethal levels of low dissolved oxygen and effects of short-term oxygen stress on subsequent growth of juvenile Panaeus monodon. Aquaculture, 94: 27-37. https://doi.org/10.1016/0044-8486(91)90126-R

Bejda, A.J., B.A. Phelan y A.l. Studholme (1992) The effect of dissolved oxygen on the growth of young-of-the-year winter flounder, Pseudopleuronectes americanus. Enviromental Biology of Fishes, 34: 321-327. https://doi.org/10.1007/BF00004780

Bevelhimer, M. y W. Bennett (2000) Assessing cumulative thermal stress in fish during chronic intermittent exposure to high temperatures. Environmental Science and Policy, 3: 211-216. https://doi.org/10.1016/S1462-9011(00)00056-3

Bloomfield, P. (1976) Fourier analysis of time series: an introduction. Edita: John Wiley & Sons. New York.

Boyd, C.E., R.P. Romaire y E. Johnston (1978) Predicting early morning dissolved oxygen concentrations in channel catfish ponds. Transactions of the American Fisheries Society, 107: 484-492. https://doi.org/10.1577/1548-8659(1978)107<484:PEMDOC>2.0.CO;2

Burel, C., J. Person-le Ruyet, F. Gaumet, A. Le Roux, A. Severe y G. Boeuf (1996) Effects of temperature on growth and metabolism in juvenile turbot. Journal of Fish Biology, 49: 678-692. https://doi.org/10.1111/j.1095-8649.1996.tb00064.x

Cairns, J., A.G. Heath y B.C. Parker (1975) The effects of temperature upon the toxicity of chemical to aquatic organisms. Hydrobilogy, 47: 135-171. https://doi.org/10.1007/BF00036747

Caissie, D., N. El-jabi y M.G. Satish (2001) Modelling of maximum daily water temperatures in a small stream using air temperatures. Journal of Hydrology, 251: 14-18. https://doi.org/10.1016/S0022-1694(01)00427-9

Culberson, S.D. y R.H. Piedrahita (1996) Aquaculture pond ecosystem model: temperature and dissolved oxygen prediction – mechanism and application. Ecological Modelling, 89: 231-258. https://doi.org/10.1016/0304-3800(95)00140-9

Elliott, J.M. y A. Hurley (1997) Functional model for maximum growth of Atlantic salmon parr, Salmo salar, from two populations in northwest England. Functional Ecology, 11: 592-603. https://doi.org/10.1046/j.1365-2435.1997.00130.x

Fiogbé, E.D. y P. Kestemont (2003) Optimum daily ration for Eurasian perch Perca fluviatilis L. reared at its optimum growing temperature. Aquaculture, 216: 243-252. https://doi.org/10.1016/S0044-8486(02)00409-X

Graynoth, E y M.J. Taylor (2000) Influence of different rations and water temperatures on the growth rates of shortfinned eels and longfinned eels. Journal of Fish Biology, 57: 681-699. https://doi.org/10.1111/j.1095-8649.2000.tb00268.x

Gutiérrez-Estrada, J.C., E. De-Pedro-Sanz, R. López-luque y I. Pulido-Calvo (2004) Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacultural Engineering (en prensa). https://doi.org/10.1016/S0144-8609(04)00015-9

Hair, J.F., R.E. Anderson, R.l. Tatham y W.C. Black (1999) Análisis multivariante. Edita: Pretince Hall. Madrid.

Hart, P.R. y G.R. Purser (1995). Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Günther, 1862). Aquaculture, 136: 221-230. https://doi.org/10.1016/0044-8486(95)01061-0

Hart, P.R., W.G. Hutchinson y G.J. Purser (1996) Effects fo photoperiod, temperature and salinity on hatcheryreared larvae of the greenback flounder (Rhombosolea tapirina Günther, 1862). Aquaculture, 144: 303-311. https://doi.org/10.1016/0044-8486(96)01305-1

Holton-Wilson, J. y B. Keating (1996) Previsiones en los negocios. Edita: IRWIN. Illinois.

Junttila, J. (2001) Structural breaks, ARIMA model and finnish inflation forecasts. International Journal of Forecasting, 17: 203-230. https://doi.org/10.1016/S0169-2070(00)00080-7

Kitanidis, P.K. y R.L. Bras (1980) Real time forecasting with a conceptual hydrological model. 2. Applications and results. Water Resources Research, 16: 1034-1044. https://doi.org/10.1029/WR016i006p01034

Klemetson, S.L. y G.L. Rogers (1985) Aquaculture pond temperature modeling. Aquaculture Engineering, 4: 191-208. https://doi.org/10.1016/0144-8609(85)90013-5

Madenjian, C.P., G.L. Rogers y A.W. Fast (1987) Predicting night time dissolved oxygen loss in prawn ponds of Hawaii: Part II. A new method. Aquaculture Engineering, 6: 209-225. https://doi.org/10.1016/0144-8609(87)90005-7

Marceau, P., D. Cluis y G. Morin (1986) Comparaison des performances relatives à un modèle déterministe et à un modèle stochastique de température de l’eau en rivière. Canadian Journal of Civil Engineering, 13(3): 352-364. https://doi.org/10.1139/l86-048

Meyer, D. y D.E. Brune (1982) Computer simulation of the diurnal oxygen levels in a stillwater aquaculture pond. Aquaculture Engineering, 1: 245-261. https://doi.org/10.1016/0144-8609(82)90034-6

Moreu, P. (1999) Estadística Informatizada. Edita: Paraninfo. Madrid.

Otnes, R.K. y L. Enochson (1978) Applied time series analysis. Edita: Wiley Interscience. New York.

Park, H.H. (1998) Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis. Fisheries Research, 38: 1-7. https://doi.org/10.1016/S0165-7836(98)00118-0

Prybotuk, V.R., Y. Junsub y D. Mitchell (2000) Comparison of neural models with ARIMA and regression models for prediction of Houston’s daily maximum ozone concentrations. European Journal of Operational Research, 122: 31-40. https://doi.org/10.1016/S0377-2217(99)00069-7

Pulido-Calvo, I. (2001) Diseño y gestión óptimos de sistemas de impulsión y de almacenamiento de agua para riego. Tesis Doctoral. Universidad de Córdoba.

Pulido-Calvo, I., J. Roldán, R. López-Luque y J.C. Gutiérrez-Estrada (2002) Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola. Ingeniería del Agua, 9(3): 319-331. https://doi.org/10.4995/ia.2002.2622

Pulido-Calvo, I., J. Roldán, R. López-Luque y J.C. Gutiérrez-Estrada (2003) Demand forecasting for irrigation water distribution systems. Journal of Irrigation and Drainage Engineering, 129(6): 422-431. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:6(422)

QI, M. y G.P. Zhang (2001) An investigation of model selection criteria for neural network time series forecasting. European Journal of Operational Research, 132: 666-680. https://doi.org/10.1016/S0377-2217(00)00171-5

Romaire, R.P. y C.E. Boyd (1979) Effects of solar radiation on the dynamics of dissolved oxygen in channel catfish ponds. Transactions of the American Fisheries Society, 108: 472-478. https://doi.org/10.1577/1548-8659(1979)108<473:EOSROT>2.0.CO;2

Soderberg, R.W. (1990) Temperature effects on the growth of blue tilapia in intensive aquaculture. The progressive Fish-Culturist, 52: 155-157. https://doi.org/10.1577/1548-8640(1990)052<0155:TEOTGO>2.3.CO;2

Taoukis, P.S., K. Koutsoumanis y G.J.E. Nychas (1999) Use of time-temperature integrators and predictive modelling for shelf life control chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53: 21-31. https://doi.org/10.1016/S0168-1605(99)00142-7

Thirumalaiah, K. y M.C. Deo (2000) Hydrological forecasting using neural networks. Journal of Hydrologic Engineering, 5: 180-189. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(180)

Uriel, E. (1985) Análisis de series temporales. Modelos ARIMA. Edita: Paraninfo. Madrid.

Uriel, E. (1995) Análisis de datos. Series temporales y análisis multivariante. Edita: AC. Madrid.

Ventura, S. (1996) Diseño de redes neuronales en métodos cinéticos. Tesis Doctoral. Universidad de Córdoba.

Wootton, R.J. (1991) Ecology of teleost fishes. Edita: Chapman and Hall. Londres.

Yang, C.C., S.O. Prasher, R. Lacroix, S. Sreekanth, N.K. Patni y L. Masse (1997) Artificial neural network model for subsurface-drained farmlands. Journal of Irrigation and Drainage Engineering, 123(4): 285-292. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:4(285)

Abstract Views

820
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Aproximaciones neuronales univariantes para la predicción de caudales diarios en cuencas portuguesas
I. Pulido-Calvo, M. Manuela Portela
Ingeniería del agua  vol: 14  num.: 2  primera página: 97  año: 2007  
doi: 10.4995/ia.2007.2905



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia