Matemáticas para la industria del agua

Joaquín Izquierdo Sebastián, Rafael Pérez, Vicente S. Fuertes, Pedro I. Iglesias, P. Amparo López

Resumen

En el campo del agua existe una enorme diversidad de actividades e intereses y, por tanto, de áreas de trabajo. Los problemas que se plantean en estas áreas son auténticos problemas de ingeniería y, como consecuencia, las ayudas que ciertas técnicas de Matemática Aplicada pueden prestar son realmente importantes. Por un lado, es preciso disponer de herramientas de análisis que permitan realizar simulaciones fiables de los distintos modelos que se plantean analizando diversas configuraciones, modos de funcionamiento, estados de carga, etc. con los que estudiar instalaciones ya existentes a partir de los datos básicos que las caracterizan. Se trata de procesos deterministas cuya plasmación matemática es a través de conjuntos acoplados de distintos tipos de ecuaciones, algebraicas, diferenciales ordinarias y en derivadas parciales, típicamente no lineales, para los que se precisan técnicas numéricas específicas. Además, dada la incertidumbre a que están sometidos muchos de los datos (especialmente en configuraciones ya existentes), resulta, con frecuencia, necesario resolver problemas inversos de gran envergadura, en donde, además, otras técnicas (estadísticas, mínimo cuadráticas, etc.) son de gran interés. Por otra parte, se necesita diseñar para realizar configuraciones nuevas. Con frecuencia, la ausencia de datos iniciales y la disposición de conjuntos limitados de restricciones de tipo diverso (algunas difícilmente objetivables), hacen de los procesos de diseño verdaderos problemas de optimización, en donde los métodos clásicos fracasan con frecuencia y para los que técnicas más actuales basadas en redes neuronales, algoritmos genéticos, teoría difusa, teoría del caos, etc. Se hacen imprescindibles. En este documento se presentan los aspectos matemáticos más importantes que se necesitan en algunos de los puntos del ciclo integral del agua haciendo hincapié de manera especial en los temas de mayor actualidad.

Palabras clave

Régimen de caudales; Parámetros hidrológicos; Variabilidad hidrológica; Frecuencia y ecosistema fluvial

Texto completo:

PDF

Referencias

A. J. Chorin, J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4684-0364-0

J. Abreu, R. Guarga, J. Izquierdo (Eds.), Transitorios y oscilaciones en sistemas hidráulicos a presión, Unidad Docente Mecánica de Fluidos, U.P.V. Valencia (1995).

J. Izquierdo, P. L. Iglesias, Mathematical Modelling of Hydraulic Transients in Simple Systems. Mathematical and Computer Modelling 35 (2002) 801-812, 2002. https://doi.org/10.1016/S0895-7177(02)00051-1

D. J. Wood, A. M. Rayes. Reliability of Algorithms for Pipe Network Analysis. J. Hydraulics Division, ASCE, 107(HY10), 1145-1161.

Grupo Mecánica de Fluidos. Análisis, Diseño, Operación y Mantenimiento de Redes Hidráulicas a Presión. UPV, 1997.

W. Rauch, J. Bertrand-Krajewski, P. Krebs, O. Mark, W. Schilling, M. Schütze, A. Vanrolleghem. Mathematical Modelling of Integrated Urban Drainage Systems. Second International Conference on Interactions between sewers, treatment plants and receiving waters in urban areas - Interurba II. Lisboa, Portugal, pp. 89-106, 2001

J. A. Fox. Transient flow in pipes, open channels and Sewers. Ellis Horwood Ltd. 1989.

F. Coen, B. Petersen, P. A. Vanrolleghem, B. Vanderhaegen, M. Henze. Model-based Characterization of Hydraulic, Kinetic and Influent Properties or an Industrial WWTP. Sat. Sci. Tech. Vol. 37, No. 12, pp. 317-326, 1998. https://doi.org/10.2166/wst.1998.0557

V. Espert, P. A. López, J. Izquierdo, Fundamentals of a water quality model solution for dissolved oxygen in one-dimensional receiving system. Numerical Modelling of Hydrodynamic Systems. Proc. of the Intrnl. Workshop, 444-445, 1999.

H. Cross. Analysis of Flow in Networks of Conduits or Conductors. Bulletin No. 286. University of Illinois Engineering Experimental Station, Urbana, Illinois, 1936.

U. Shamir, C. D. D. Howard. Water Distribution Systems Analysis. J. Hydraulics Division, ASCE, 94(HY1), 219-234, 1994.

D. J. Wood, C. O. A. Charles. Hydraulic Network Analysis Using Linear Theory. J. Hydraulics Division, ASCE 98(HY7), Proc. Paper 9031, 1157-1170, 1972.

E. Todini, S. Pilati. A gradient algorithm for the analysis of pipe networks. Proceedings International Conference on Computer Applications for Water Supply and Distribution. Leucester, Polytechnic, 8-10 September, 1987.

Grupo Mecánica de Fluidos. SARA, Software de Análisis de Redes de Agua, Manual de Usuario. Ed. Grupo Mecánica de Fluidos, UPV, 1998.

L. A. Rossman. Manual de usuario de EPANET. Drinking Water Research Group. Risk Reduction Engineering Laboratory. US EPA. Traducido por Grupo Mecánica de Fluidos, UPV, 1997.

Cabrera, E., Izquierdo, J., Abreu, J.M., Iglesias, P.L. Filling of pipelines with undulating elevation profiles. Journal of Hydraulic Engineering, ASCE, ISSN 0733-9429, 1997.

Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J. Pipeline start-up with entrapped air. Journal of Hydraulic Research, ISSN 0022-1686, 1999. https://doi.org/10.1080/00221689909498518

H. M. Chaudhry, Applied Hydraulic Transients. Van Nostrand Reinhold, New York, N.Y. (1987).

E. B. Wylie, V. L. Streeter, Fluid transients in Systems. Prentice-Hall, Englewood Cliffs, New Jersey (1993).

D. J. Wood, R. G. Dorsch, C. Lightener, Wave plan Analysis of Unsteady Flow in Closed Conduits. Proc. ASCE J. Hyd. Div., 92(HT2) 83-110 (1965).

D. J. Wood, J. E. Funk, SURGE 5.0. Computer analysis of transient flow in pipe networks including surge control devices. User’s Manual, Civil Engineering Software Center, Department of Civil Engineering, University of Kentucky. Lexington, Kentucky (USA), (1988a).

H. M. Chaudhry, Numerical Solution of Transient-Flow Equations, Proc. Hydraulic Specialty Conf. Amer. Soc. Civ. Engrs., pp 663-690 (1983).

A. J. Baker, Finite Element Computational Fluid Mechanics, McGraw-Hill, New York, (1983). https://doi.org/10.2514/6.1983-1918

C.S. Watt, Application of Finite Element Method to Unsteady Flow Problems, Ph.D. Thesis, Sunderland Polytechnic (1975).

J. A. Liggett, The Boundary Element Method-Some Fluid Applications, In Multidimensional Fluid Transients, (Edited by H. M. Chaudhry and C.S. Martin), Amer. Soc. Mech. Engrg. 1-8, (1984).

D. Gottlieb, S.A. Orszag, Theory of Spectral Methods for Mixed Initial-Boundary Value Problems, Parts I and II, ICASE, NASA Langley Research Center, Hampton, Virginia, (1977).

D. Gottlieb, M. Y. Hussaini, S. A. Orzag, Theory and Applications of Spectral Methods, In Spectral Methods for Partial Differential Equations, (Edited by Voigt, R.G., Gottlieb, D. and Hussaini, M.Y.). SIAM, Philadelphia, (1984).

J. Izquierdo, P. L. Iglesias, E. Cabrera, DYAGATS - Simulación mediante ordenador personal de Transitorios en Sistemas Simples, VII Encontro nacional de saneamiento basico, Coimbra, Portugal, (1996).

P. L. Iglesias, Modelo General de Análisis de Redes Hidráulicas a Presión en Régimen Transitorio. Tesis Doctoral, Septiembre, (2001).

J. Izquierdo, P. L. Iglesias, Mathematical Modelling of Hydraulic Transients in Complex Systems. Mathematical and Computer Modelling. Pendiente de publicación.

D. C. Wiggert, M. J. Sundquist. Fixed-grid Characteristics for Pipeline Transients. J. Hydr. Engrg., ASCE, 103(13, 1403-1415, 1977.

D. E. Goldberg, E. B. Wylie. Characteristics Method using Time-Line Interpolation. J. Hydr. Engrg., ASCE 109(5), 670-683, 1983. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(670)

C. Lai. Comprehensive Method of Characteristics for Flow Simulation. J. Hydr. Engrg., ASCE 114(9), 1074-1095, 1989. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:9(1074)

M. Holly, A. Preissmann. Accurate calculation of transport in two dimensions. J. Hydr. Engrg., ASCE 103(11), 1259-1277, 1977.

I. A. Sibetheros, E. R. Holley, J. M. Branski. Spline Interpolation for Waterhammer Analysis. J. Hydr. Engrg., ASCE 117(10), 1332-1349. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1332)

B. W. Karney, M. S. Ghidaoui. Flexible Discretization Algorithm for Fixed-Grid MOC in Pipelines. J. Hydr. Engrg., ASCE 123(11), 1004-1011, 1997. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(1004)

M. S. Ghidaoui, B. W. Karney. Equivalent Differential Equations in Fixed-Grid Characteristics Method. J. Hydr. Engrg., ASCE 120(10), 1159-1175, 1994. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:10(1159)

X. J. Wang, M. F, Lambert, A. R. Simpson, J. A. Ligget, J. P. Vitkovsky. Leak Detection in Pipelines using the Damping of Fluid Transients. Journal of Hydraulic Engineering, Vol. 128, No. 7, 697-711, 2002. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(697)

B. Brunone, M Ferrante. Detecting leaks in pressurized pipes by means of transients. Journal of Hydraulic Research. Vol. 39, No. 4, 1-9, 2002. https://doi.org/10.1080/00221686.2001.9628278

W. Mpesha, M. H. Chaudhry, S.L.Gassman. Leak Detection in Pipes by Frequency Response Method using a Step Excitation. Journal of Hydraulic Research. Vol. 40, No. 1, 55-62, 2002. https://doi.org/10.1080/00221680209499873

S. Ranjithan, J. W. Eheart and J. H. Garrett. Application of neural network in groundwater remediation under conditions of uncertainty. New uncertainty concepts in hydrology and water resources. Z. W. Kundzewicz (Ed.). Cambridge University Press, U.K., 133-140, 1995. https://doi.org/10.1017/CBO9780511564482.015

J. Izquierdo. Desarrollo de una herramienta para la optimizacion de la gestion de recursos hidricos en sistemas de distribucion de agua basada en las redes neuronales. Proyecto CICYT de la Dirección General de Investigación del Ministerio de Ciencia y Tecnología, de referencia REN2000-1152/HID. Resultados aún no publicados, 2002.

R. Pérez, M. Andreu, J. Izquierdo. Diseño de Redes de Distribución de Agua. Cap. del libro Ingeniería Hidráulica Aplicada a los Sistemas de Distribución de Agua. E. Grupo Mecánica de Fluidos, 653-727, 1966.

E. Alperovits, U. Shamir. Design of Optimal Water Distribution Systems. Water Resources Res., 1(6), 885-900, 1977. https://doi.org/10.1029/WR013i006p00885

A. R. Simpson, G. C. Dandy, L. J. Murphy. Genetic algorithms compared to other techniques for pipe optimization. J. Water Resour. Plng. and Mgmt., ASCE, 120(4), 423-443, 1994. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)

D. Savic, G. Walters. Genetic Algorithms for Least-Cost Design of Water Distribution Systems. J. Water Resour. Plng. and Mgmt., ASCE, 123(2), 67-77, 1997. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)

Ch. Xu, I. C. Goulter. Reliability-Based Optimal Design of Water Distribution Systems. J. Water Resour. Plng. and Mgmt., ASCE, 125(6), 352-362, 1999. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(352)

I. Goulter. Analytical and simulation models for reliability analysis in water distribution systems. Improving efficiency and reliability in water distribution systems. E. Cabrera y A. Vela (Eds.), Kluwer Academic Press, London, 235-266, 1995. https://doi.org/10.1007/978-94-017-1841-7_10

I. Goulter, A. Coals. Quantitative approaches to reliability in pipe networks. J. Transp. Engrg., ASCE 112(3), 287-301, 1986. https://doi.org/10.1061/(ASCE)0733-947X(1986)112:3(287)

I. Goulter, F. Bouchart. Reliability-constrained pipe network model. J. Hydr. Engrg., ASCE 116(2), 211-229, 1990. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:2(211)

L. W. Mays. Methodologies for assessment of aging water distribution systems. Rep. No. CRWR 227, Ctr. For Res. In Water Resour., The University of Texas, Austin, Tex., 1989.

R. Guercio, Z. Xu. Linearized optimization model for reliability-based design of water systems. J. Hydr. Engrg., ASCE 123(11), 1020-1026, 1997. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(1020)

A. Ostfeld, U. Shamir. Design of Optimal Reliable Multiquality Water-Supply Systems. J. of Plng. Resour. and Mgmgt., ASCE 122(5), 322- 333, 1996. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:5(322)

A. Ben-Tal, G. Eiger, J, Outrata, J. Zowe. A nondifferentiable approach to decomposable optimization problems with an application to the design of water distribution networks. Advances in optimization –lecture notes in economics and mathematical systems, No. 382, W. Jetti and D. Pallaschke, eds. Springer-Verlag, New York, N.Y., 197-216, 1992. https://doi.org/10.1007/978-3-642-51682-5_13

B. C. Yen, S. T. Cheng, C. S. Melching. First-order reliability analysis. Stochastic and risk analysis in hydraulic engineering. B. C. Yen, e., Water Resources Publications, Littleton, Col., 1-36, 1986.

C. Xu, I. C. Goulter. Uncertainty analysis of water distribution networks. Stochastic Hydraulics ’96. K. S. Tickle et al. Eds., Balkema, Rotterdam, The Netherlands, 609-616, 1996.

Y. K. Tung. Uncertainty analysis in water resources engineering. Stochastic Hydraulics ’96. K. S. Tickle et al. Eds., Balkema, Rotterdam, The Netherlands, 29-46, 1996.

A. Kaufmann, M. M. Gupta. Introduction to fuzzy arithmetics: Theory and Applications. Van Nostrand Reinhold, New York, 1991.

A. Bardossy, L. Duckstein. Fuzzy rule-based modeling with application to geophysical, economic, biological and engineering systems, CRC, London, 1995.

E. Hansen. Global Optimization using Interval Analysis. Dekker, New York, 1992.

A. Neumaier. Interval Methods for System of Equations. Cambridge University Press, Cambridge, U.K., 1990.

R. Revelli, L. Ridolfi. Fuzzy Approach for Analysis of Pipe Networks. J. Hydr. Engrg., ASCE 128(1), 93-101, 2002. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(93)

D. F. Yates, A.B. Templeman, T. B. Boffey. The computational complexity of the problem of determining least capital cost designs for water supply systems. Engrg. Optimization, 7(2), 142-155, 1984. https://doi.org/10.1080/03052158408960635

Z. Michalewicz. Genetic algorithms + data structures = evolutionary programs. Springer-Verlag, New York, Inc., New York, N.Y., 1992. https://doi.org/10.1007/978-3-662-02830-8

G. A. Walters, G. Lohbeck. Optimal layout of tree networks using genetic algorithms. Engrg. Optimization, 22(1), 27-48, 1993. https://doi.org/10.1080/03052159308941324

L. J. Murphy, A. R. Simpson. Genetic algorithms in pipe network optimization. Res. Rep. No. R39. Dept. of Civil Envir. Engrg., Univ. of Adelaide, Australia, 1992.

G. A. Walters, R. G. Cembrowicz. Optimal design of water distribution networks. Water Supply Systems, state of the art and future trends, E. Cabrera y F. Martínez, Eds., Computational Mechanics Publications, Southampton, 91-117, 1993.

D. A. Savic, G. A. Walters. Genetic Algorithms for lesast-cost design of water distribution networks. J. of Water Plng. and Mgmt., 123(2), 67-77, 1997. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)

Z. Y. Wu, A. R. Simpson. A self-adaptative boundary search genetic algorithm and its application to water distribution systems. J. Hydr. Research, Vol. 40, No. 2, 191-199, 2002. https://doi.org/10.1080/00221680209499862

D. A. Savic, G. A. Walters. Genetic Algorithms and evolution programs for decision support. Proc., 4th Int. Symp.: Advances in Logistics Sci. and Software, J. Knezevic, ed., Exeter, U.K., 70-80, 1994.

F. Martínez, R. Pérez, J. Izquierdo. Optimum Design and Reliability in Water Distribution Systems, in Improving efficiency and reliability in water distribution systems. Kluwer Academic Pub. Dordrecht, Boston, London (1995). https://doi.org/10.1007/978-94-017-1841-7_13

T. R. Neelakantan, N. V. Pundarikanthan. Neural network-based simulation-optimization model for reservoir operation. J. Water Resour. Plng. and Mgmt., ASCE (2), 57-62, 2000. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:2(57)

V. M. Johnson, L. R. Leah. Accuracy of neural network approximators in simulation-optimization. J. Water Resour. Plng. and Mgmt., ASCE(2), 48-56, 2000. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:2(48)

D. R. Hush, B. G. Horne. Progress in supervised neural networks –What is new since Lippmann. Signal Processing Mag., 4, 8-39, 1993. https://doi.org/10.1109/79.180705

J. Izquierdo, A. Escribano. Predimensionado de calderines antiariete mediante una red neuronal. Por aparecer. 2002.

A. Likas, K. Blekas, A. Safylopatis. Application of the Fuzzy Min-Max Neural Network Classifier to Problems with Continuous and Discrete Attributes. Proc. of IEEE Workshop on Neural Networks for Signal Processing (NNSP’94), pp 163-170, 1994.

K. Blekas, A. Likas, A. Safylopatis. A Fuzzy Neural Network Approach to Classification Based on Proximity Characteristics Patterns. Proc. 9th IEEE Int. Conference on tools with Artificial Intelligence, Nov 1997, Newport Beach, CA, USA.

M. B. Abbott, V. M. Babovic, J. A. Cunge. Towards the hydraulics of the hydroinformatics era. J. Hydr. Research, Vol. 39, No. 4, 339-349, 2001. https://doi.org/10.1080/00221680109499839

Y. B. Dibike. Developing generic hydrodynamic models using artificial neural networks. J. Hydr. Research, Vol. 40, No. 2, 183-190, 2002. https://doi.org/10.1080/00221680209499861

E. Cumberbatch, A. Fitt. Mathematical Modeling. Case Studies from Industry. Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511626326

G. R. Fulford, P. Broadbridge. Industrial Mathematics. Case studies in the diffusion of heat and matter. Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511613210

Abstract Views

480
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia