Uso de la técnica SPH para el estudio de la interacción entre olas y estructuras

Autores/as

  • M. Gómez Gesteira Universidad de Vigo
  • R.A. Dalrymple Johns Hopkins University
  • A.J.C. Crespo Universidad de Vigo
  • D. Cerqueiro Universidad de Vigo

DOI:

https://doi.org/10.4995/ia.2004.2525

Palabras clave:

Enginyeria civil, Enginyeria hidràulica, marítima i sanitària

Resumen

Se muestra la potencialidad del método SPH (Smoothed Particle Hydrodynamics) para el tratamiento de la interacción entre olas y estructuras. En particular, se estudia el proceso de rebase de una ola sobre una estructura horizontal paralela a la superficie del agua en reposo mediante una versión bidimensional del código y la colisión de una ola solitaria con una estructura vertical delgada mediante una versión tridimensional. En ambos casos se muestra cómo el modelo reproduce tanto cualitativa como cuantitativamente diferentes experimentos de laboratorio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Baarholm, R.J., 2001. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms.

Batchelor, G. K., 1974. Introduction to fluid dynamics. Cambridge University Press. U.K.

Benz, W., 1989. Smooth particle hydrodynamics: A review. Numerical Modeling of Stellar Pulsation: Problems and Prospects, (Proceedings of NATO Workshop, Les Arcs, France). https://doi.org/10.1007/978-94-009-0519-1_16

Benz, W. and Asphaug, E., 1993. Explicit 3D continuum fracture modeling with smoothed particle hydrodynamics. Proceedings of Twenty- fourth Lunar and Planetary Science Conference. Lunar and Planetary Institute, 99- 100.

Benz, W. and Asphaug, E., 1994. Impact simulations with fracture. I. Methods and tests. Icarus 107, 98-116. https://doi.org/10.1006/icar.1994.1009

Benz, W. and Asphaug, E., 1995. Simulations of brittle solids using smoothed particle hydrodynamics. Comp. Phys. Comm., 87, 253- 265. https://doi.org/10.1016/0010-4655(94)00176-3

Bonet, J. and Kulasegaram, S., 2000. Corrections and stabilization of Smooth Particle Hydrodynamics methods with applications in metal forming simulations. Intl. J. Num. Meth. Engrng., 47, 1189-1214. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I

Buchner, B. and Cozijn, J.L., 1997. An investigation into the numerical simulation of green water. MARIN, February 1997.

Buchner, B.a and van Ballegoyen, G., 1997a. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume A2: Technical Report.

Buchner, B. and van Ballegoyen, G., 1997b. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume A3: Scale effect tests.

Buchner, B. and van Ballegoyen, G., 1997c. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume C9: Buchner, B. and van Ballegoyen, G., 1997d. Joint Industry Project: F(P)SO Green Water Loading. MARIN, December 1997. Volume A1: Discussion Report.

Cerqueiro, D., Zou, S, Gómez-Gesteira, M, and Dalrymple, R.A. 2004. Boundary conditions generated by static particles in SPH methods. Submitted J. Comput. Phys.

Chen, S., Johnson, D.B., Raad, P.E., and Fadda, D., 1997. The Surface Marker and Micro Cell Method. International Journal for Numerical Methods in Fluids, 25, 749-778. https://doi.org/10.1002/(SICI)1097-0363(19971015)25:7<749::AID-FLD584>3.3.CO;2-F

Cox, D. T. and Ortega, J. A., 2002. Laboratory observations of green water overtopping a fixed deck. Ocean Engnrg. 29, 1827-1840. https://doi.org/10.1016/S0029-8018(02)00011-2

Cummins, S. J. and Rudman, M., 1999. An SPH projection meted. J. Comp. Phys. 152, 584-607. https://doi.org/10.1006/jcph.1999.6246

Dalrymple, R.A. and Knio, O., 2000. SPH Modelling of Water Waves. Proc. Coastal Dynamics, Lund, 779-787. https://doi.org/10.1061/40566(260)80

Dalrymple, R. A., Knio, O., Cox, D. T., Gomez-Gesteira, M. and Zou, S., 2002. Using a Lagrangian particle method for deck overtopping. Proc. Waves 2001, ASCE. 1083- 1091. https://doi.org/10.1061/40604(273)110

Durisen, R. H., Gingold, R. A. and Boss, A. P., 1986. Dynamic Fission Instabilities in Rapidly Rotating n=3/2 Polytropes: A Comparison of Results from Finite-difference and Smoothed Particle Hydrodynamics Codes. Astron. J. 305, 281- 308. https://doi.org/10.1086/164248

Evrard A.E., 1988. Beyond N-body: 3D cosmological gas dynamics. Mon. Not. R. Astr. Soc., 235, 911- 934. https://doi.org/10.1093/mnras/235.3.911

Faber, J.A and Manor, J.B., 2001. Post Newtonian SPH Calculations of Binary Neutron Star Coalescence. II. Mass- ratio, equation of state and spin. Physical Review D (63), 044012 (1-16). https://doi.org/10.1103/PhysRevD.63.044012

Faber, J.A and Rasio, F.A., 2000. Post Newtonian SPH Calculations of Binary Neutron Stars Coalescence. Method and First Results. Physical Review D (62) 064012 (1-23). https://doi.org/10.1103/PhysRevD.62.064012

Faltinsen, O.M., Greco, M. and Landrini, M., 2001. Green water loading on a FPSO. JOMAE Special Issue. https://doi.org/10.1115/1.1464128

Fontaine, E., 2000. On the use of smoothed particle hydrodynamics to model extreme waves and their interaction with structures. Proc. Rogue Waves 2000, Brest, France. www.ifremer.fr/metocean/conferences/wk.html

Gingold, A. and Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc. 181, 375-389. https://doi.org/10.1093/mnras/181.3.375

Gómez-Gesteira, M. and Dalrymple, R., 2004. Using a 3D SPH method for wave impact on a tall structure. J. Wtrwy. Port, Coastal and Ocean Engrg.130(2), 63-69. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63)

Gómez-Gesteira, M., Cerqueiro, D., Crespo, C. and Dalrymple, R.A. 2004. Green water overtopping analyzed with a SPH model. To appear in Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2004.08.003

Gotoh, H. and Sakai, T., 1999. Lagrangian simulation of breaking waves using particle meted. Coastal Eng. J. 41(3&4), 303-326. https://doi.org/10.1142/S0578563499000188

Gotoh, H. and Fredsoe, J., 2000. Lagrangian two- phase flow model of the settling behavior of fine sediment dumped into water. In Coastal Engineering 2000, 3906-3919. https://doi.org/10.1061/40549(276)306

Gotoh, H., Shibahara, T. and Sakai, T., 2001. Sub- particlescale turbulence model for the MPS method- lagrangian flow model for hydraulic engineering. Computational Fluid Dybanics Journal 9(4) 339- 347.

Gotoh, H., Sakai, T and Hayashi, M., 2002. J. Of Hydroscience and Hydraulic Engineering 20(1) 95-102.

Greco, M., 2001. A Two-Dimensional Study of Green-Water Loading. Ph. D. Thesis.

Johnson, G.R,. Stryk, R.A. and Beissel S.R., 1996. SPH for high velocity impact computations. Comput. Methods Applo. Mech. Eng ., 139, 347- 373. https://doi.org/10.1016/S0045-7825(96)01089-4

Habe, A., 1989. In Status Rep. Super Computing Japan, ed. T. Nakamura, M. Nagasawa. National Lab. High Energy Phys.

Health & Safety Executive. 2001. Analysis of green water susceptibility of FPSO/FSU’s on UKCS. HSE Books, Sudbury.

Herant, M. and Benz, W., 1991. Hydrodynamical instabilities and mixing in SN 1987A - Two-dimensional simulations of the first 3 months. Astrophysical Journal, 370, 81-84. https://doi.org/10.1086/185982

Hsu, T., -J, Sakakiyama, T. and Liu, P.L.-F., 2002. A numerical model for waves and turbulence flow in front of a composite breakwater. Coastal Emgrg., 46, 25-50. https://doi.org/10.1016/S0378-3839(02)00045-5

Lahy, N., 1989. A particle method for relativistic fluid mechanics. MSc. Thesis. Monash Univ.

Libersky, L.D. and Petscheck, A.G., 1991. Smoothed particle hydrodynamics with strength oif materials. Proceedings of the Next Free Lagrange Conference, Vol. 395, Trease, H, Fritts, J and Crowley, W (eds.), Springer- Verlag, 248- 257. https://doi.org/10.1007/3-540-54960-9_58

Libersky, L.D. and Petscheck, A.G., 1993. High strain Lagrangian hydrodynamics- a three- dimensional SPH code for dynamic material response. J. Comput. Phys. 109, 67- 75. https://doi.org/10.1006/jcph.1993.1199

Liu, G.R., 2003. Mesh Free Methods. Moving Beyond the Finite Element Method. CRC Press. https://doi.org/10.1201/9781420040586

Lucy, L., 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013-1024. https://doi.org/10.1086/112164

Monaghan, J.J., 1989. On the problem of penetration in particle methods. J. Comp. Phys. 82, 1-15. https://doi.org/10.1016/0021-9991(89)90032-6

Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Appl. 30, 543- 574. https://doi.org/10.1146/annurev.aa.30.090192.002551

Monaghan, J.J., 1994. Simulating free surface flows with SPH. J. Comp. Phys. 110, 399- 406. https://doi.org/10.1006/jcph.1994.1034

Monaghan, J.J., 1996. Gravity Currents and Solitary Waves. Physica D.98, 523-533. https://doi.org/10.1016/0167-2789(96)00110-8

Monaghan, J.J., Cas, R.F., Kos, A., Hallworth, M., 1999. Gravity currents descending a ramp in a stratified tank. J. Fluid Mech. 379, 39-70. https://doi.org/10.1017/S0022112098003280

Monaghan, J.J.and Kos, A., 1999. Solitary waves on a Cretan beach. J. Wtrwy. Port, Coastal and Ocean Engrg. 125, 145-154. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)

Monaghan, J.J., 2000. SPH without tensile instability. J. Comp. Phys. 159, 290-311. https://doi.org/10.1006/jcph.2000.6439

Monaghan, J.J., Kos, A., 2000. Scott Russell’s wave generator. Phys. Fluids 12, 622-630. https://doi.org/10.1063/1.870269

Monaghan, J. J. and Latanzio, J.C. 1985. A refined method for astrophysical problems. Astron. Astrophys, 149, 135- 143.

Monaghan, J. J. and Latanzio, J.C., 1991.A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophysical Journal, 375, 177-189. https://doi.org/10.1086/170179

Nagasawa, M., Nakamura, T., Miyama, S. M., 1988. Three-dimensional hydrodynamical simulations of type II supernova - Mixing and fragmentation of ejecta Publ. Astron. Soc. Jpn. 40, 691-708.

Peskin, C. S., 1977. Numerical analysis of blood flow in the heart. Journal Computational Physics 25, 220- 252. https://doi.org/10.1016/0021-9991(77)90100-0

Phillips, G.J. and Monaghan, J.J., 1985. A Numerical Method for Three-dimensional simulations of Collapsing, Isothermal, Magnetic Gas Clouds. Mon. Not. R. Astr. Soc., 216, 883-895. https://doi.org/10.1093/mnras/216.4.883

Raad, P. http://engr.smu.edu/waves/project.html

Randles, P.W. and Libersky, L.D., 1996. Smoothed Particle Hydrodynamics – some recent improvementsand applications. Comput. Methods Appl. Mech. Eng., 138, 375- 408. https://doi.org/10.1016/S0045-7825(96)01090-0

Sakakiyama, T. and Liu, P.L.-F., 2001. Laboratory esperiments for wave motions and turbulence flows in front of a breakwater. Coastal Engrg., 44, 117-139. https://doi.org/10.1016/S0378-3839(01)00027-8

Shapiro P.R., Martel H., Villumsen J.V., and Owen J.M., 1996. Adaptive Smoothed Particle Hydrodynamics, with Application to Cosmology: Methodology. Astrophysical Journal Supplement 103, .269- 330. https://doi.org/10.1086/192279

Stellingwerf, R. F. and Peterkin, R. E., 1990. Smooth particle magnetohydrodynamics. Tech. Rep. MRC/ABQ-R-1248. Albuquerque: Mission Res. Corp.

Swelgle, K.S. and Attaway, S.W., 1995. On the feasibility of using smoothed particle hydrodynamics for underwater explotion calculation. Comput- Mech., 17, 151- 168. https://doi.org/10.1007/BF00364078

Trulsen, K., Spjelkavik, B. and Mehlum, E., 2002. Green water computed with a spline-based collocation method for potential flow. Intl. J. Appld. Mech. Engrg. 7(1), 107-123.

Wang, Z., Jensen, J. J., Xia, J., 1998. On the Effect of Green Water on Deck on the Wave Bending Moment. Proceedings of the Seventh International Symposium on Practical Design of Ships and Mobile Units, The Hague. https://doi.org/10.1016/S0928-2009(98)80159-5

Descargas

Publicado

2004-06-30

Cómo citar

Gómez Gesteira, M., Dalrymple, R., Crespo, A., & Cerqueiro, D. (2004). Uso de la técnica SPH para el estudio de la interacción entre olas y estructuras. Ingeniería Del Agua, 11(2), 147–170. https://doi.org/10.4995/ia.2004.2525

Número

Sección

Artículos