Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono
DOI:
https://doi.org/10.4995/ia.2023.19198Palabras clave:
fondos del agua, retorno de la inversión, modelación hidrológica, secuestro de carbonoResumen
Se presenta un análisis de retorno de la inversión por la implementación de proyectos de conservación por parte de la Corporación VivoCuenca, Fondo de Agua que opera en la cuenca del río Chinchiná, Colombia, la cual abastece la ciudad de Manizales. Este análisis consiste en el planteamiento de un catálogo de escenarios de Soluciones Basadas en la Naturaleza (SbN) que propenden por mejorar los servicios ecosistémicos de retención de sedimentos, secuestro de carbono y regulación hídrica. Para cada conjunto de SbN propuestos se evalúa su viabilidad financiera mediante un análisis de retorno de inversión, el cual engloba el balance de los costos de operación, los costos de implementación de las SbN, costos evitados y co-beneficios. En este caso se consideran los ahorros potenciales por disminución de sedimentos tratados debido a la implementación de las SbN y co-beneficios asociados a la venta de bonos de carbono. Dada la escasez de información, las variables físicas requeridas para los balances financieros (caudales sólidos y líquidos, biomasa y emisiones de CO2 evitadas) se obtienen mediante la implementación de modelos distribuidos de los ciclos del agua y del carbono. Los resultados muestran que el caso de negocio es viable únicamente si se considera la emisión y venta de bonos de carbono por efecto del secuestro de CO2 en las SbN propuestas.
Descargas
Citas
Abell, R., Asquith, N., Boccaletti, G., Bremer, L., Chapin, E., Erickson-Quiroz, A., Higgins, J., Johnson, J., Kang, S., Karres, N., Lehner, B., McDonald, R., Raepple, J., Shemie, D., Simmons, E., Sridhar, A., Vigerstøl, K., Vogl, A., Wood, S. 2017. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection. Executive Summary. The Nature Conservancy, Arlington, VA, USA. Consultado en línea el 18 de abril de 2023: https://www.nature.org/content/dam/tnc/nature/en/documents/BeyondtheSource_ExecSummary_FINAL.pdf
Arias, P.A., Ortega, G., Villegas, L.D., Martínez, J.A. 2021. Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingeniería, 100, 75-96. https://doi.org/10.17533/udea.redin DOI: https://doi.org/10.17533/udea.redin.20210525
Bonham-Carter, G. 1994. Geographic Information Systems for Geoscientists: Modelling With GIS. Computer Methods in Geosciences. Pergamon, Ottawa, Ontario, Canada. 417 p.
Brauman, K.A., Benner, R., Benitez, S., Bremer, L., Vigerstøl, K. 2019. Water Funds. In: Mandle, L., Ouyang, Z., Salzman, J.E., Daily, G. (eds) Green Growth That Works. Island Press, Washington, DC. https://doi.org/10.5822/978-1-64283-004-0_9 DOI: https://doi.org/10.5822/978-1-64283-004-0_9
Bussi, G., Francés, F., Montoya, J. J., Julien, P. Y. 2014. Distributed sediment yield modelling: importance of initial sediment conditions. Environmental Modelling & Software, 58, 58-70. https://doi.org/10.1016/J.ENVSOFT.2014.04.010 DOI: https://doi.org/10.1016/j.envsoft.2014.04.010
Bussi, G., Rodríguez-Lloveras, X., Francés, F., Benito, G., Sánchez-Moya, Y., Sopeña, A. 2013. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrology and Earth System Sciences, 17(8), 3339-3354. https://doi.org/10.5194/HESS-17-3339-2013 DOI: https://doi.org/10.5194/hess-17-3339-2013
Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C. A. J., Kapos, V., Key, I., Roe, D., Smith, A., Woroniecki, S., Seddon, N. 2020. Mapping the effectiveness of nature-based solutions for climate change adaptation. Global Change Biology, 26(11), 6134-6155. https://doi.org/10.1111/GCB.15310 DOI: https://doi.org/10.1111/gcb.15310
Chen, S.T., Yu, P.S., Tang, Y.H. 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13-22. https://doi.org/10.1016/j.jhydrol.2010.01.021 DOI: https://doi.org/10.1016/j.jhydrol.2010.01.021
Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C.R., Renaud, F.G., Welling, R., Walters, G. 2019. Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 98, 20-29. https://doi.org/10.1016/J.ENVSCI.2019.04.014 DOI: https://doi.org/10.1016/j.envsci.2019.04.014
Corpocaldas. 2014. Plan de Ordenamiento y Manejo de la Cuenca Hidrográfica del Río Chinchiná. Manizales, Caldas, Colombia.
Deutsch, C.V., Journel, A.G. 1998. GSLIB: Geostatistical Software Library and User’s Guide. Second Edition. Oxford University Press; Applied Geostatistics Series. New York, Estados Unidos. 369 p.
Didan, K., Huete, A. 2006. MODIS Vegetation Index Product Series Collection 5 Change Summary. MODIS VI C5 Changes. The University of Arizona. Tucson, Arizona, Estados Unidos. 17 p.
Dubayah, R., Armston, J., Healey, S.P., Bruening, J.M., Patterson, P.L., Kellner, J.R., Duncanson, L., Saarela, S., Ståhl, G., Yang, Z., Tang, H., Blair, J.B., Fatoyinbo, L., Goetz, S., Hancock, S., Hansen, M., Hofton, M., Hurtt, G., Luthcke, S., 2022. GEDI launches a new era of biomass inference from space. Environmental Research Letters, 17. https://doi.org/10.1088/1748-9326/ac8694 DOI: https://doi.org/10.31223/X52W68
Dumitru, A., Laura, W. 2021. Evaluating the impact of nature-based solutions: A Handbook for Practitioners. https://doi.org/10.13140/RG.2.2.10757.47843
Ferreira, B.M., Soares-Filho, B.S., Pereira, F.M.Q. 2019. The Dinamica EGO virtual machine. Science of Computer Programming, 173, 3-20. https://doi.org/10.1016/J.SCICO.2018.02.002 DOI: https://doi.org/10.1016/j.scico.2018.02.002
Francés, F. 2010. Modelo TETIS. Manual de Usuario y Modelo Conceptual. Universidad Politécnica de Valencia. Valencia, España. Disponible en http://lluvia.dihma.upv.es/. 72 p.
Francés, F., Vélez, J.I., Vélez, J.J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. https://doi.org/10.1016/J.JHYDROL.2006.06.032 DOI: https://doi.org/10.1016/j.jhydrol.2006.06.032
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J. 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66 DOI: https://doi.org/10.1038/sdata.2015.66
Gómez-Hernández, J.J., Cassiraga, E.F. 1994. Theory and Practice of Sequential Simulation. In Geostatistical Simulations (M. Armstrong, P. Dowd, eds.). Springer, Fontainebleau, France. p. 111-124. https://doi.org/10.1007/978-94-015-8267-4_10 DOI: https://doi.org/10.1007/978-94-015-8267-4_10
Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press; Applied Geostatistics Series. New York, Estados Unidos. 483 p.
Houska, T., Kraft, P., Chamorro-Chavez, A., Breuer, L. 2015. SPOTting Model Parameters Using a Ready-Made Python Package. PLOS ONE, 10(12), e0145180. https://doi.org/10.1371/JOURNAL.PONE.0145180 DOI: https://doi.org/10.1371/journal.pone.0145180
IPCC. 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Reino Unido y Nueva York, Estados Unidos, pp. 3-33. https://doi.org/10.1017/9781009325844.001
Kroeger, T., Klemz, C., Boucher, T., Fisher, J.R.B., Acosta, E., Cavassani, A.T., Dennedy-Frank, P.J., Garbossa, L., Blainski, E., Santos, R.C., Giberti, S., Petry, P., Shemie, D., Dacol, K. 2019. Returns on investment in watershed conservation: Application of a best practices analytical framework to the Río Camboriú Water Producer program, Santa Catarina, Brazil. Science of The Total Environment, 657, 1368-1381. https://doi.org/10.1016/J.SCITOTENV.2018.12.116 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.116
Krysanova, V., Arnold, J.G. 2008. Advances in ecohydrological modelling with SWAT-a review. Hydrological Sciences Journal, 53(5), 939-947. https://doi.org/10.1623/hysj.53.5.939 DOI: https://doi.org/10.1623/hysj.53.5.939
Maraun, D. 2016. Bias correcting climate change simulations - a critical review. Current Climate Change Reports, 2, 211-220. https://doi.org/10.1007/s40641-016-0050-x. DOI: https://doi.org/10.1007/s40641-016-0050-x
Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann, J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B., Havlík, P., Hanssen, S., Humpenöder, F., Landholm, D., Lawrence, D. 2021. Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, (August), 1-34. https://doi.org/10.1111/gcb.15873 DOI: https://doi.org/10.1111/gcb.15873
Rojas, R., Julien, P, Johnson, B. 2003. CASC2D-SED v 1.0 Reference Manual A 2-Dimensional Rainfall-Runoff and Sediment Model. Colorado State University. Boulder, Colorado, Estados Unidos. 140 p.
Running, S.W., Mu, Q., Zhao, M., Moreno, A. 2017. User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). NASA Earth Observing System MODIS Land Algorithm, 36 p.
Saxton, K. E., Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70, 1569-1578. https://doi.org/10.2136/sssaj2005.0117 DOI: https://doi.org/10.2136/sssaj2005.0117
Soares-Filho, B., Rodrigues, H., Costa, W. (2009). Modelamiento de dinámica ambiental con Dinámica EGO. Giudice, R. trad. Belo Horizonte, Brazil, Centro de Sensoriamento Remoto/Universidade Federal de Minas Gerais. 119 p.
Stafford, L., Shemie, D., Kroeger, T., Baker, T., Apse, C., Turpie, J., Forsythe, K. 2008. Business Case for The Greater Cape Town Water Fund. Editado por The Nature Conservancy. Consultado en línea el 18 de abril de 2023: https://waterfundstoolbox.org/regions
The Nature Conservancy. 2018. Water Funds Field Guide. Consultado en línea el 18 de abril de 2023: https://waterfundstoolbox.org/regions.
del Valle, J.I., Restrepo, I.H., María Londoño, M.M. 2011. Recuperación de la biomasa mediante la sucesión secundaria, Cordillera Central de los Andes, Colombia. Revista de Biología Tropical, 59(3), 1337-1358. https://doi.org/10.15517/rbt.v0i0.3403 DOI: https://doi.org/10.15517/rbt.v0i0.3403
Velasco-Forero, C.. Sampere-Torres, D.. Cassiraga, E.. Gomez-Hernandez, J.J. 2009. A non-parametric automatic blending methodology to estimate rainfall fields. Advances in Water Resources, 32(7), 986-1002. https://10.1016/j.advwatres.2008.10.004 DOI: https://doi.org/10.1016/j.advwatres.2008.10.004
Velásquez, N., Hoyos, C. D., Vélez, J. I., Zapata, E. 2020. Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin. Hydrology and Earth System Sciences, 24(3), 1367-1392. https://doi.org/10.5194/HESS-24-1367-2020 DOI: https://doi.org/10.5194/hess-24-1367-2020
Velásquez N, Vélez J.I., Álvarez-Villa O.D., Salamanca S.P. 2023. Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology, 10(4), 76. https://doi.org/10.3390/hydrology10040076 DOI: https://doi.org/10.3390/hydrology10040076
Vélez, J.J., Puricelli, M., López Unzu, F., Francés, F. 2009. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth System Sciences, 13(2), 229-246. https://doi.org/10.5194/HESS-13-229-2009 DOI: https://doi.org/10.5194/hess-13-229-2009
Yao, T., Journel, A.G. 1998. Automatic Modeling of (Cross) Covariance Tables Using Fast Fourier Transform. Mathematical Geology, 30(6), 589-615. https://doi.org/10.1023/A:1022335100486 DOI: https://doi.org/10.1023/A:1022335100486
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Ingeniería del Agua
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional