Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)

Autores/as

  • Bruno Mazzorana Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile https://orcid.org/0000-0003-1218-4495
  • Diego Bahamondes Laboratorio de Procesos Superficiales, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile
  • Liz Montecinos Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile
  • Virginia Ruiz-Villanueva Institute of Earth Surface Dynamics (IDYST), Faculty of Geosciences and the Environment, University of Lausanne https://orcid.org/0000-0002-0196-320X
  • Iván Rojas Escuela de Graduados, Facultad de Ciencias Forestales y Recursos Naturales. Universidad Austral de Chile https://orcid.org/0000-0002-4144-9803

DOI:

https://doi.org/10.4995/ia.2023.18866

Palabras clave:

Iber, Chaitén, peligrosidad, flujos trifásicos, sensibilidad hidrodinámica

Resumen

En este trabajo se exploró la respuesta hidrodinámica del Río Blanco ante flujos trifásicos (agua, sedimento y madera), en un contexto de perturbación volcánica. La escasa información hidrológica dificulta el uso de métodos tradicionales, por lo que se definió una alternativa metodológica para determinar la peligrosidad de inundaciones a través de modelos numéricos (Iber) y el diseño de escenarios. Los resultados mostraron que el caudal necesario para el desborde del río varía entre 850 y 950 m3/s para flujos monofásicos (solo agua), mientras que para los flujos trifásicos el caudal fue mucho menor (entre 700 y 800 m3/s). Además, se observaron diferencias significativas en el área inundada entre los escenarios con distintas rugosidades y proporción de sedimento y madera en el flujo. Los resultados evidencian la gran complejidad y sensibilidad del sistema fluvial del Río Blanco.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Bruno Mazzorana, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile

After graduating in forest and environmental sciences at Padova University (Italy) in 2000, Bruno Mazzorana worked as a planner of hydraulic structures at the Department of Hydraulic Engineering from 2000 to 2006 of the Autonomous Province of Bolzano (Italy). Then in 2009 he earned his phd at Boku University (Vienna, Austria) with a phd thesis that contributes to unravel wood material transport in Alpine Rivers. Thereafter he contiued his research investigating the physical vulnerability of buildings exposed yo biphasic flows in mountain Rivers. In parallel he collaborated his various environmental agencias in refining a procedure to manage river corridors participatorily and sustainably. In 2015 he was appointed as associate professor at the Universidad Austral de Chile. There he dedicated his research efforts to an enhance understanding of process cascaded in perturbed mountain basins and to the physical modelling of wood laden flows. In 2022 he got an invitation as guest professor al the University of Innsbruck.

Diego Bahamondes, Laboratorio de Procesos Superficiales, Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile

Diego Bahamondes es titulado en Geografía y en el Magister en Ciencias: Mención Recursos hídricos, en la Universidad Austral de Chile. Actualmente se desempeña como asistente técnico en el proyecto de investigación SEDIMPACT FONDECYT 1200091 (ANID). Actualmente su labor se enmarca en los procesos hidro morfológicos de la Patagonia, estudiando la hidrodinámica de los ríos que tienen contacto con asentamientos humanos, a través del uso de modelos numéricos y análisis geoespaciales con sistemas de información geográficas.
El estudio de estas dinámicas es en definitiva su gran pasión, mezclando el estudio entre los procesos fluviales y sus complejas formas de representarse en el territorio, como también la interacción con los asentamientos humanos y con la resiliencia de estos ante eventos de inundaciones.

Virginia Ruiz-Villanueva, Institute of Earth Surface Dynamics (IDYST), Faculty of Geosciences and the Environment, University of Lausanne

Virginia Ruiz-Villanueva is an assistant professor at the University of Lausanne (UNIL), Switzerland. She obtained a BA in Earth Sciences from the University of Oviedo (Spain, 2006) and a Masters in Geomorphology, Hydrology and Natural Risks from the Complutense University of Madrid (Spain, 2008), where she also completed her doctorate in Fluvial Geomorphology in February 2013. In December 2012, she moved to Switzerland for her first post-doc position at the Dendrolab Laboratory at the University of Bern (Institute of Geological Sciences). The laboratory and part of the team moved to the Institute of Environmental Sciences (University of Geneva) in 2016 where she continued as a scientific collaborator. In 2019, she became a senior researcher at the Hydraulics, Hydrology, and Glaciology (VAW) Laboratory of the Swiss Federal Institute of Technology Zurich (ETH) until she joined the Geosciences and Environment Faculty at UNIL in 2020.

Virginia´s background as a geomorphologist makes her much fascinated in understanding how the natural world functions. She is interested in the physical processes that shape the Earth’s surface and interplay with humans; but as a fluvial geomorphologist, her research has targeted the study of processes that control the form, structure, and function of rivers and their catchments. Virginia has worked extensively on the analysis of natural hazards and cascade processes in mountain areas, with an emphasis on flood dynamics, hillslope-channel coupling, and the feedbacks and interactions between flow-sediment-vegetation.

In her work, Virginia combines a field approach and computational skills as well as the ability to numerically simulate processes in river basins. Her work aims at developing new methods for monitoring and modeling fluvial processes, helping design effective management strategies, and informing sustainable environmental policies.

Since her thesis on the risks of flooding in ungauged mountain basins in the Spanish Central System, Virginia’s research has extended to the study of different multi-hazards and geomorphic cascade processes in several mountainous areas (e.g.,the Swiss Alps, the Polish Tatra, or the Pyrenees). Her multiple international collaborations have led her to investigate contrasting river systems, such as some of the large basins in the Indian Himalayas, the Rhône river in France, and small upper reaches in the Carpathians, the Chilean Andes, and the Tian Shan.

Citas

Basso-Báez, S., Mazzorana, B., Ulloa, H., Bahamondes, D., Ruiz-Villanueva, V., Sanhueza, D.,... Picco, L. 2020. Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 102, 102655. https://doi.org/10.1016/j.jsames.2020.102655 DOI: https://doi.org/10.1016/j.jsames.2020.102655

Benson, M.A., Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements (No. 03-A1). US Govt. Print. Off.

Bierman, P.R., Montgomery, D.R., Massey, C.A. 2013. Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts (Vol. 2013, pp. ED23E-01).

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E.,... Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004 DOI: https://doi.org/10.1016/j.rimni.2012.07.004

Bladé, E., Ruiz-Villanueva, V., Stoffel, M., Corestein, G. 2016a. Challenges of numerical modelling of flow, sediment, and wood in rivers. In Proceedings of the third International Conference of Wood in World Rivers.

Braudrick, C.A., Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7 DOI: https://doi.org/10.1016/S0169-555X(01)00058-7

Braudrick, C.A., Grant, G.E., Ishikawa, Y., Ikeda, H. 1997. Dynamics of wood transport in streams: a flume experiment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(7), 669-683. https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L DOI: https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L

Chanson, H. 2004. Hydraulics of open channel flow. Elsevier.

Chow, V.T. 1959. Open-channel hydraulics. McGraw-Hill civil engineering series.

Comiti, F., Lucía, A., Rickenmann, D. 2016. Large wood recruitment and transport during large floods: a review. Geomorphology, 269, 23-39. https://doi.org/10.1016/j.geomorph.2016.06.016 DOI: https://doi.org/10.1016/j.geomorph.2016.06.016

Detert, M., Weitbrecht, V. 2013. User guide to gravelometric image analysis by BASEGRAIN. Advances in science and research, 1789-1795.

Dirección general de Aguas (DGA), Ministerio de Obras Públicas. 2023. Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. URL: https://snia.mop.gob.cl/BNAConsultas/reportes

Drobot, R., Draghia, A.F., Ciuiu, D., Trandafir, R. 2021. Design floods considering the epistemic uncertainty. Water, 13(11), 1601. https://doi.org/10.3390/w13111601 DOI: https://doi.org/10.3390/w13111601

Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017 DOI: https://doi.org/10.5194/hess-21-3183-2017

Gilbert, G.K., Murphy, E.C. 1914. The transportation of debris by running water (No. 86). US Government Printing Office. https://doi.org/10.3133/pp86 DOI: https://doi.org/10.3133/pp86

Gippel, C.J. 1995. Environmental hydraulics of large woody debris in streams and rivers. Journal of Environmental Engineering, 121(5), 388-395. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388) DOI: https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388)

Graham, D.J., Reid, I., Rice, S.P. 2005a. Automated sizing of coarse-grained sediments: image-processing procedures. Mathematical geology, 37(1), 1-28. https://doi.org/10.1007/s11004-005-8745-x DOI: https://doi.org/10.1007/s11004-005-8745-x

Graham, D.J., Rice, S.P., Reid, I. 2005b. A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003868 DOI: https://doi.org/10.1029/2004WR003868

Gurnell, A.M., Petts, G.E., Harris, N., Ward, J.V., Tockner, K., Edwards, P.J., Kollmann, J. 2000. Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25(3), 255-275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H

Gurnell, A.M., Piégay, H., Swanson, F.J., Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology, 47(4), 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x DOI: https://doi.org/10.1046/j.1365-2427.2002.00916.x

Hinshaw, S., Wohl, E., Davis, D. 2020. The effects of longitudinal variations in valley geometry and wood load on flood response. Earth Surface Processes and Landforms, 45(12), 2927-2939. https://doi.org/10.1002/esp.4940 DOI: https://doi.org/10.1002/esp.4940

Iroumé, A., Mao, L., Andreoli, A., Ulloa, H., Ardiles, M.P. 2015. Large wood mobility processes in low-order Chilean river channels. Geomorphology, 228, 681-693. https://doi.org/10.1016/j.geomorph.2014.10.025 DOI: https://doi.org/10.1016/j.geomorph.2014.10.025

James, Mike R., tuart Robson. 2014. “Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks.” Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609 DOI: https://doi.org/10.1002/esp.3609

Korup, O., Seidemann, J., Mohr, C.H. 2019. Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nature Geoscience, 12(4), 284-289. https://doi.org/10.1038/s41561-019-0315-9 DOI: https://doi.org/10.1038/s41561-019-0315-9

Lancaster, S.T., Hayes, S.K., Grant, G.E. 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR001227 DOI: https://doi.org/10.1029/2001WR001227

Li, Xiu quan, Zhu an Chen, Li ting Zhang, and Dan Jia. 2016. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. Procedia Environmental Sciences 36:184-190. https://doi.org/10.1016/j.proenv.2016.09.031 DOI: https://doi.org/10.1016/j.proenv.2016.09.031

Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., Yao, J. 2019. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Science of the Total Environment, 660, 245-259. https://doi.org/10.1016/j.scitotenv.2019.01.015 DOI: https://doi.org/10.1016/j.scitotenv.2019.01.015

Lisle, T.E. 1995. Particle size variations between bed load and bed material in natural gravel bed channels. Water Resources Research, 31(4), 1107-1118. https://doi.org/10.1029/94WR02526 DOI: https://doi.org/10.1029/94WR02526

Major, J.J., Lara, L.E. 2013. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geology, 40(2), 196-215. https://doi.org/10.5027/andgeoV40n2-a01 DOI: https://doi.org/10.5027/andgeoV40n2-a01

Major, J.J., Bertin, D., Pierson, T.C., Amigo, Á., Iroumé, A., Ulloa, H., Castro, J. 2016. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water Resources Research, 52(7), 5075-5094. https://doi.org/10.1002/2015WR018250 DOI: https://doi.org/10.1002/2015WR018250

Major, J.J., Pierson, T.C., Hoblitt, R.P., Moreno, H. 2013. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): Forest disturbances, deposits, and dynamics. Andean Geology, 40(2), 324-358. https://doi.org/10.5027/andgeoV40n2-a09 DOI: https://doi.org/10.5027/andgeoV40n2-a09

Marcus, W.A., Marston, R.A., Colvard Jr, C.R., Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology, 44(3-4), 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7 DOI: https://doi.org/10.1016/S0169-555X(01)00181-7

Martini, L., Picco, L., Iroumé, A., Cavalli, M. 2019. Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Science of the Total Environment, 692, 1209-1222. https://doi.org/10.1016/j.scitotenv.2019.07.303 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.303

Mazzorana, B., Hübl, J., Zischg, A., Largiader, A. 2011. Modelling woody material transport and deposition in alpine rivers. Natural Hazards, 56(2), 425-449. https://doi.org/10.1007/s11069-009-9492-y DOI: https://doi.org/10.1007/s11069-009-9492-y

Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T.,... Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316 DOI: https://doi.org/10.1111/jfr3.12316

Mazzorana, B., Picco, L., Rainato, R., Iroumé, A., Ruiz-Villanueva, V., Rojas, C.,... Melnick, D. 2019. Cascading processes in a changing environment: disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 655, 1089-1103. https://doi.org/10.1016/j.scitotenv.2018.11.217 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.217

McMillan, H.K., Westerberg, I.K., Krueger, T. 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), e1319. https://doi.org/10.1002/wat2.1319 DOI: https://doi.org/10.1002/wat2.1319

Meyer-Peter E, Muller R 1948. Formulas for Bed-Load Transport. IAHSR, Stockholm, pp 39–64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7

Moss, M.E. 1979. Some basic considerations in the design of hydrologic data networks. Water Resources Research, 15(6), 1673-1676. https://doi.org/10.1029/WR015i006p01673 DOI: https://doi.org/10.1029/WR015i006p01673

Phillips, J.D. 2009. Landscape evolution space and the relative importance of geomorphic processes and controls. Geomorphology, 109(3-4), 79-85. https://doi.org/10.1016/j.geomorph.2009.01.007 DOI: https://doi.org/10.1016/j.geomorph.2009.01.007

Phillips, J.D. 2014. State transitions in geomorphic responses to environmental change. Geomorphology, 204, 208-216. https://doi.org/10.1016/j.geomorph.2013.08.005 DOI: https://doi.org/10.1016/j.geomorph.2013.08.005

Pierson, T.C., Major, J.J. 2014. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42, 469-507. https://doi.org/10.1146/annurev-earth-060313-054913 DOI: https://doi.org/10.1146/annurev-earth-060313-054913

Pierson, T.C., Major, J.J., Amigo, A., Moreno, H. 2013. Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bulletin of Volcanology, 75(5), 1-17. https://doi.org/10.1007/s00445-013-0723-4 DOI: https://doi.org/10.1007/s00445-013-0723-4

Ravazzolo, D., Mao, L., Mazzorana, B., Ruiz-Villanueva, V. 2017. Brief communication: The curious case of the large woodladen flow event in the Pocuro stream (Chile). Natural Hazards and Earth System Sciences, 17(11), 2053-2058. https://doi.org/10.5194/nhess-17-2053-2017 DOI: https://doi.org/10.5194/nhess-17-2053-2017

Rijn, L.C.V. 1984. Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)

Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Eguibar, M.A., Pardo-Igúzquiza, E. 2013. Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 27(24), 3424-3437. https://doi.org/10.1002/hyp.9433 DOI: https://doi.org/10.1002/hyp.9433

Ruiz Villanueva, V., Bladé Castellet, E., Díez-Herrero, A., Bodoque, J.M., Sánchez-Juny, M. 2014a. Two-dimensional modelling of large wood transport during flash floods. Earth surface processes and landforms, 39(4), 438-449. https://doi.org/10.1002/esp.3456 DOI: https://doi.org/10.1002/esp.3456

Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., Bodoque, J.M. 2014b. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077–1096. https://doi.org/10.2166/hydro.2014.026 DOI: https://doi.org/10.2166/hydro.2014.026

Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Bladé, E. 2014c. Large wood transport as significant influence on flood risk in a mountain village. Natural hazards, 74(2), 967-987. DOI 10.1007/s11069-014-1222-4 DOI: https://doi.org/10.1007/s11069-014-1222-4

Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N.K., Stoffel, M. 2017. Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3-28. https://doi.org/10.1177/0309133316658614 DOI: https://doi.org/10.1177/0309133316658614

Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L.,... Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603 DOI: https://doi.org/10.1002/esp.4603

Ruiz-Villanueva, V., Gamberini, C., Bladé, E., Stoffel, M., Bertoldi, W. 2020. Numerical modeling of instream wood transport, deposition, and accumulation in braided morphologies under unsteady conditions: Sensitivity and high-resolution quantitative model validation. Water Resources Research, 56(7), e2019WR026221. https://doi.org/10.1029/2019WR026221 DOI: https://doi.org/10.1029/2019WR026221

Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., Stoffel, M. 2016a. Factors controlling large-wood transport in a mountain river. Geomorphology, 272, 21-31. https://doi.org/10.1016/j.geomorph.2015.04.004 DOI: https://doi.org/10.1016/j.geomorph.2015.04.004

Ruiz-Villanueva, V., Piégay, H., Gurnell, A.M., Marston, R.A., Stoffel, M. 2016b. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics, 54(3), 611-652. https://doi.org/10.1002/2015RG000514 DOI: https://doi.org/10.1002/2015RG000514

Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., Stoffel, M. 2016c. Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena, 140, 182-194. https://doi.org/10.1016/j.catena.2016.02.001 DOI: https://doi.org/10.1016/j.catena.2016.02.001

Rute, C. 2014. Diseño y estudio de defensas fluviales en la ribera sur del río Blanco en Chaitén. Universidad Austral de Chile, Valdivia, Chile.

Smith, D., Fischbacher, M. 2009. The changing nature of risk and risk management: The challenge of borders, uncertainty and resilience. Risk management, 11(1), 1-12. https://doi.org/10.1057/rm.2009.1 DOI: https://doi.org/10.1057/rm.2009.1

St, L., Wold, S. 1989. Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272. https://doi.org/10.1016/0169-7439(89)80095-4 DOI: https://doi.org/10.1016/0169-7439(89)80095-4

Starr, W. 2019. “Counterfactuals”, The Stanford Encyclopedia of Philosophy 2021, Edward N. Zalta (ed.), https://plato.stanford.edu/archives/sum2021/entries/counterfactuals

Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P. 2017. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112-127. https://doi.org/10.1016/j.geomorph.2016.10.011 DOI: https://doi.org/10.1016/j.geomorph.2016.10.011

Swanson, F.J., Jones, J.A., Crisafulli, C.M., Lara, A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geology, 40(2), 359-391. https://doi.org/10.5027/andgeoV40n2-a10 DOI: https://doi.org/10.5027/andgeoV40n2-a10

Taleb, N.N. 2007. Black swans and the domains of statistics. The american statistician, 61(3), 198-200. https://doi.org/10.1198/000313007X219996 DOI: https://doi.org/10.1198/000313007X219996

Thoms, M.C., Piégay, H., Parsons, M. 2018. What do you mean,‘resilient geomorphic systems’?. Geomorphology, 305, 8-19. https://doi.org/10.1016/j.geomorph.2017.09.003 DOI: https://doi.org/10.1016/j.geomorph.2017.09.003

Tonon, A., Iroumé, A., Picco, L., Oss-Cazzador, D., Lenzi, M.A. 2017. Temporal variations of large wood abundance and mobility in the Blanco River affected by the Chaitén volcanic eruption, southern Chile. Catena, 156, 149-160. https://doi.org/10.1016/j.catena.2017.03.025 DOI: https://doi.org/10.1016/j.catena.2017.03.025

Tonon, A., Picco, L., Rainato, R. 2018. Test of methodology for developing a large wood budget: A 1-year example from a regulated gravel bed river following ordinary floods. Catena, 165, 115-124. https://doi.org/10.1016/j.catena.2018.01.035 DOI: https://doi.org/10.1016/j.catena.2018.01.035

Umazano, A.M., Melchor, R.N., Bedatou, E., Bellosi, E.S., Krause, J.M. 2014. Fluvial response to sudden input of pyroclastic sediments during the 2008–2009 eruption of the Chaitén Volcano (Chile): The role of logjams. Journal of South American Earth Sciences, 54, 140-157. https://doi.org/10.1016/j.jsames.2014.04.007 DOI: https://doi.org/10.1016/j.jsames.2014.04.007

Viero, D.P., Peruzzo, P., Carniello, L., Defina, A. 2014. Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resources Research, 50(7), 5941-5957. https://doi.org/10.1002/2013WR014293 DOI: https://doi.org/10.1002/2013WR014293

Wohl, E., Polvi, L.E., Cadol, D. 2011. Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, South Carolina, USA. Geomorphology, 126(1-2), 108-120. https://doi.org/10.1016/j.geomorph.2010.10.035 DOI: https://doi.org/10.1016/j.geomorph.2010.10.035

Wohl, E., Scott, D.N., Lininger, K.B. 2018. Spatial distribution of channel and floodplain large wood in forested river corridors of the Northern Rockies. Water Resources Research, 54(10), 7879-7892. https://doi.org/10.1029/2018WR022750 DOI: https://doi.org/10.1029/2018WR022750

Wyżga, B., Zawiejska, J., Mikuś, P., Kaczka, R.J. 2015. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology, 228, 275-285. https://doi.org/10.1016/j.geomorph.2014.09.014 DOI: https://doi.org/10.1016/j.geomorph.2014.09.014

Descargas

Publicado

2023-04-28

Cómo citar

Mazzorana, B., Bahamondes Rosas, D., Montecinos, L. ., Ruiz-Villanueva, V., & Rojas, I. (2023). Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile). Ingeniería Del Agua, 27(2), 73–92. https://doi.org/10.4995/ia.2023.18866

Número

Sección

Artículos