Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)
DOI:
https://doi.org/10.4995/ia.2023.18866Palabras clave:
Iber, Chaitén, peligrosidad, flujos trifásicos, sensibilidad hidrodinámicaResumen
En este trabajo se exploró la respuesta hidrodinámica del Río Blanco ante flujos trifásicos (agua, sedimento y madera), en un contexto de perturbación volcánica. La escasa información hidrológica dificulta el uso de métodos tradicionales, por lo que se definió una alternativa metodológica para determinar la peligrosidad de inundaciones a través de modelos numéricos (Iber) y el diseño de escenarios. Los resultados mostraron que el caudal necesario para el desborde del río varía entre 850 y 950 m3/s para flujos monofásicos (solo agua), mientras que para los flujos trifásicos el caudal fue mucho menor (entre 700 y 800 m3/s). Además, se observaron diferencias significativas en el área inundada entre los escenarios con distintas rugosidades y proporción de sedimento y madera en el flujo. Los resultados evidencian la gran complejidad y sensibilidad del sistema fluvial del Río Blanco.
Descargas
Citas
Basso-Báez, S., Mazzorana, B., Ulloa, H., Bahamondes, D., Ruiz-Villanueva, V., Sanhueza, D.,... Picco, L. 2020. Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 102, 102655. https://doi.org/10.1016/j.jsames.2020.102655 DOI: https://doi.org/10.1016/j.jsames.2020.102655
Benson, M.A., Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements (No. 03-A1). US Govt. Print. Off.
Bierman, P.R., Montgomery, D.R., Massey, C.A. 2013. Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts (Vol. 2013, pp. ED23E-01).
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E.,... Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004 DOI: https://doi.org/10.1016/j.rimni.2012.07.004
Bladé, E., Ruiz-Villanueva, V., Stoffel, M., Corestein, G. 2016a. Challenges of numerical modelling of flow, sediment, and wood in rivers. In Proceedings of the third International Conference of Wood in World Rivers.
Braudrick, C.A., Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7 DOI: https://doi.org/10.1016/S0169-555X(01)00058-7
Braudrick, C.A., Grant, G.E., Ishikawa, Y., Ikeda, H. 1997. Dynamics of wood transport in streams: a flume experiment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(7), 669-683. https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L DOI: https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L
Chanson, H. 2004. Hydraulics of open channel flow. Elsevier.
Chow, V.T. 1959. Open-channel hydraulics. McGraw-Hill civil engineering series.
Comiti, F., Lucía, A., Rickenmann, D. 2016. Large wood recruitment and transport during large floods: a review. Geomorphology, 269, 23-39. https://doi.org/10.1016/j.geomorph.2016.06.016 DOI: https://doi.org/10.1016/j.geomorph.2016.06.016
Detert, M., Weitbrecht, V. 2013. User guide to gravelometric image analysis by BASEGRAIN. Advances in science and research, 1789-1795.
Dirección general de Aguas (DGA), Ministerio de Obras Públicas. 2023. Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. URL: https://snia.mop.gob.cl/BNAConsultas/reportes
Drobot, R., Draghia, A.F., Ciuiu, D., Trandafir, R. 2021. Design floods considering the epistemic uncertainty. Water, 13(11), 1601. https://doi.org/10.3390/w13111601 DOI: https://doi.org/10.3390/w13111601
Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017 DOI: https://doi.org/10.5194/hess-21-3183-2017
Gilbert, G.K., Murphy, E.C. 1914. The transportation of debris by running water (No. 86). US Government Printing Office. https://doi.org/10.3133/pp86 DOI: https://doi.org/10.3133/pp86
Gippel, C.J. 1995. Environmental hydraulics of large woody debris in streams and rivers. Journal of Environmental Engineering, 121(5), 388-395. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388) DOI: https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388)
Graham, D.J., Reid, I., Rice, S.P. 2005a. Automated sizing of coarse-grained sediments: image-processing procedures. Mathematical geology, 37(1), 1-28. https://doi.org/10.1007/s11004-005-8745-x DOI: https://doi.org/10.1007/s11004-005-8745-x
Graham, D.J., Rice, S.P., Reid, I. 2005b. A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003868 DOI: https://doi.org/10.1029/2004WR003868
Gurnell, A.M., Petts, G.E., Harris, N., Ward, J.V., Tockner, K., Edwards, P.J., Kollmann, J. 2000. Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25(3), 255-275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H
Gurnell, A.M., Piégay, H., Swanson, F.J., Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology, 47(4), 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x DOI: https://doi.org/10.1046/j.1365-2427.2002.00916.x
Hinshaw, S., Wohl, E., Davis, D. 2020. The effects of longitudinal variations in valley geometry and wood load on flood response. Earth Surface Processes and Landforms, 45(12), 2927-2939. https://doi.org/10.1002/esp.4940 DOI: https://doi.org/10.1002/esp.4940
Iroumé, A., Mao, L., Andreoli, A., Ulloa, H., Ardiles, M.P. 2015. Large wood mobility processes in low-order Chilean river channels. Geomorphology, 228, 681-693. https://doi.org/10.1016/j.geomorph.2014.10.025 DOI: https://doi.org/10.1016/j.geomorph.2014.10.025
James, Mike R., tuart Robson. 2014. “Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks.” Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609 DOI: https://doi.org/10.1002/esp.3609
Korup, O., Seidemann, J., Mohr, C.H. 2019. Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nature Geoscience, 12(4), 284-289. https://doi.org/10.1038/s41561-019-0315-9 DOI: https://doi.org/10.1038/s41561-019-0315-9
Lancaster, S.T., Hayes, S.K., Grant, G.E. 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR001227 DOI: https://doi.org/10.1029/2001WR001227
Li, Xiu quan, Zhu an Chen, Li ting Zhang, and Dan Jia. 2016. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. Procedia Environmental Sciences 36:184-190. https://doi.org/10.1016/j.proenv.2016.09.031 DOI: https://doi.org/10.1016/j.proenv.2016.09.031
Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., Yao, J. 2019. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Science of the Total Environment, 660, 245-259. https://doi.org/10.1016/j.scitotenv.2019.01.015 DOI: https://doi.org/10.1016/j.scitotenv.2019.01.015
Lisle, T.E. 1995. Particle size variations between bed load and bed material in natural gravel bed channels. Water Resources Research, 31(4), 1107-1118. https://doi.org/10.1029/94WR02526 DOI: https://doi.org/10.1029/94WR02526
Major, J.J., Lara, L.E. 2013. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geology, 40(2), 196-215. https://doi.org/10.5027/andgeoV40n2-a01 DOI: https://doi.org/10.5027/andgeoV40n2-a01
Major, J.J., Bertin, D., Pierson, T.C., Amigo, Á., Iroumé, A., Ulloa, H., Castro, J. 2016. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water Resources Research, 52(7), 5075-5094. https://doi.org/10.1002/2015WR018250 DOI: https://doi.org/10.1002/2015WR018250
Major, J.J., Pierson, T.C., Hoblitt, R.P., Moreno, H. 2013. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): Forest disturbances, deposits, and dynamics. Andean Geology, 40(2), 324-358. https://doi.org/10.5027/andgeoV40n2-a09 DOI: https://doi.org/10.5027/andgeoV40n2-a09
Marcus, W.A., Marston, R.A., Colvard Jr, C.R., Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology, 44(3-4), 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7 DOI: https://doi.org/10.1016/S0169-555X(01)00181-7
Martini, L., Picco, L., Iroumé, A., Cavalli, M. 2019. Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Science of the Total Environment, 692, 1209-1222. https://doi.org/10.1016/j.scitotenv.2019.07.303 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.303
Mazzorana, B., Hübl, J., Zischg, A., Largiader, A. 2011. Modelling woody material transport and deposition in alpine rivers. Natural Hazards, 56(2), 425-449. https://doi.org/10.1007/s11069-009-9492-y DOI: https://doi.org/10.1007/s11069-009-9492-y
Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T.,... Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316 DOI: https://doi.org/10.1111/jfr3.12316
Mazzorana, B., Picco, L., Rainato, R., Iroumé, A., Ruiz-Villanueva, V., Rojas, C.,... Melnick, D. 2019. Cascading processes in a changing environment: disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 655, 1089-1103. https://doi.org/10.1016/j.scitotenv.2018.11.217 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.217
McMillan, H.K., Westerberg, I.K., Krueger, T. 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), e1319. https://doi.org/10.1002/wat2.1319 DOI: https://doi.org/10.1002/wat2.1319
Meyer-Peter E, Muller R 1948. Formulas for Bed-Load Transport. IAHSR, Stockholm, pp 39–64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7
Moss, M.E. 1979. Some basic considerations in the design of hydrologic data networks. Water Resources Research, 15(6), 1673-1676. https://doi.org/10.1029/WR015i006p01673 DOI: https://doi.org/10.1029/WR015i006p01673
Phillips, J.D. 2009. Landscape evolution space and the relative importance of geomorphic processes and controls. Geomorphology, 109(3-4), 79-85. https://doi.org/10.1016/j.geomorph.2009.01.007 DOI: https://doi.org/10.1016/j.geomorph.2009.01.007
Phillips, J.D. 2014. State transitions in geomorphic responses to environmental change. Geomorphology, 204, 208-216. https://doi.org/10.1016/j.geomorph.2013.08.005 DOI: https://doi.org/10.1016/j.geomorph.2013.08.005
Pierson, T.C., Major, J.J. 2014. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42, 469-507. https://doi.org/10.1146/annurev-earth-060313-054913 DOI: https://doi.org/10.1146/annurev-earth-060313-054913
Pierson, T.C., Major, J.J., Amigo, A., Moreno, H. 2013. Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bulletin of Volcanology, 75(5), 1-17. https://doi.org/10.1007/s00445-013-0723-4 DOI: https://doi.org/10.1007/s00445-013-0723-4
Ravazzolo, D., Mao, L., Mazzorana, B., Ruiz-Villanueva, V. 2017. Brief communication: The curious case of the large woodladen flow event in the Pocuro stream (Chile). Natural Hazards and Earth System Sciences, 17(11), 2053-2058. https://doi.org/10.5194/nhess-17-2053-2017 DOI: https://doi.org/10.5194/nhess-17-2053-2017
Rijn, L.C.V. 1984. Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Eguibar, M.A., Pardo-Igúzquiza, E. 2013. Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 27(24), 3424-3437. https://doi.org/10.1002/hyp.9433 DOI: https://doi.org/10.1002/hyp.9433
Ruiz Villanueva, V., Bladé Castellet, E., Díez-Herrero, A., Bodoque, J.M., Sánchez-Juny, M. 2014a. Two-dimensional modelling of large wood transport during flash floods. Earth surface processes and landforms, 39(4), 438-449. https://doi.org/10.1002/esp.3456 DOI: https://doi.org/10.1002/esp.3456
Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., Bodoque, J.M. 2014b. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077–1096. https://doi.org/10.2166/hydro.2014.026 DOI: https://doi.org/10.2166/hydro.2014.026
Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Bladé, E. 2014c. Large wood transport as significant influence on flood risk in a mountain village. Natural hazards, 74(2), 967-987. DOI 10.1007/s11069-014-1222-4 DOI: https://doi.org/10.1007/s11069-014-1222-4
Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N.K., Stoffel, M. 2017. Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3-28. https://doi.org/10.1177/0309133316658614 DOI: https://doi.org/10.1177/0309133316658614
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L.,... Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603 DOI: https://doi.org/10.1002/esp.4603
Ruiz-Villanueva, V., Gamberini, C., Bladé, E., Stoffel, M., Bertoldi, W. 2020. Numerical modeling of instream wood transport, deposition, and accumulation in braided morphologies under unsteady conditions: Sensitivity and high-resolution quantitative model validation. Water Resources Research, 56(7), e2019WR026221. https://doi.org/10.1029/2019WR026221 DOI: https://doi.org/10.1029/2019WR026221
Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., Stoffel, M. 2016a. Factors controlling large-wood transport in a mountain river. Geomorphology, 272, 21-31. https://doi.org/10.1016/j.geomorph.2015.04.004 DOI: https://doi.org/10.1016/j.geomorph.2015.04.004
Ruiz-Villanueva, V., Piégay, H., Gurnell, A.M., Marston, R.A., Stoffel, M. 2016b. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics, 54(3), 611-652. https://doi.org/10.1002/2015RG000514 DOI: https://doi.org/10.1002/2015RG000514
Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., Stoffel, M. 2016c. Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena, 140, 182-194. https://doi.org/10.1016/j.catena.2016.02.001 DOI: https://doi.org/10.1016/j.catena.2016.02.001
Rute, C. 2014. Diseño y estudio de defensas fluviales en la ribera sur del río Blanco en Chaitén. Universidad Austral de Chile, Valdivia, Chile.
Smith, D., Fischbacher, M. 2009. The changing nature of risk and risk management: The challenge of borders, uncertainty and resilience. Risk management, 11(1), 1-12. https://doi.org/10.1057/rm.2009.1 DOI: https://doi.org/10.1057/rm.2009.1
St, L., Wold, S. 1989. Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272. https://doi.org/10.1016/0169-7439(89)80095-4 DOI: https://doi.org/10.1016/0169-7439(89)80095-4
Starr, W. 2019. “Counterfactuals”, The Stanford Encyclopedia of Philosophy 2021, Edward N. Zalta (ed.), https://plato.stanford.edu/archives/sum2021/entries/counterfactuals
Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P. 2017. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112-127. https://doi.org/10.1016/j.geomorph.2016.10.011 DOI: https://doi.org/10.1016/j.geomorph.2016.10.011
Swanson, F.J., Jones, J.A., Crisafulli, C.M., Lara, A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geology, 40(2), 359-391. https://doi.org/10.5027/andgeoV40n2-a10 DOI: https://doi.org/10.5027/andgeoV40n2-a10
Taleb, N.N. 2007. Black swans and the domains of statistics. The american statistician, 61(3), 198-200. https://doi.org/10.1198/000313007X219996 DOI: https://doi.org/10.1198/000313007X219996
Thoms, M.C., Piégay, H., Parsons, M. 2018. What do you mean,‘resilient geomorphic systems’?. Geomorphology, 305, 8-19. https://doi.org/10.1016/j.geomorph.2017.09.003 DOI: https://doi.org/10.1016/j.geomorph.2017.09.003
Tonon, A., Iroumé, A., Picco, L., Oss-Cazzador, D., Lenzi, M.A. 2017. Temporal variations of large wood abundance and mobility in the Blanco River affected by the Chaitén volcanic eruption, southern Chile. Catena, 156, 149-160. https://doi.org/10.1016/j.catena.2017.03.025 DOI: https://doi.org/10.1016/j.catena.2017.03.025
Tonon, A., Picco, L., Rainato, R. 2018. Test of methodology for developing a large wood budget: A 1-year example from a regulated gravel bed river following ordinary floods. Catena, 165, 115-124. https://doi.org/10.1016/j.catena.2018.01.035 DOI: https://doi.org/10.1016/j.catena.2018.01.035
Umazano, A.M., Melchor, R.N., Bedatou, E., Bellosi, E.S., Krause, J.M. 2014. Fluvial response to sudden input of pyroclastic sediments during the 2008–2009 eruption of the Chaitén Volcano (Chile): The role of logjams. Journal of South American Earth Sciences, 54, 140-157. https://doi.org/10.1016/j.jsames.2014.04.007 DOI: https://doi.org/10.1016/j.jsames.2014.04.007
Viero, D.P., Peruzzo, P., Carniello, L., Defina, A. 2014. Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resources Research, 50(7), 5941-5957. https://doi.org/10.1002/2013WR014293 DOI: https://doi.org/10.1002/2013WR014293
Wohl, E., Polvi, L.E., Cadol, D. 2011. Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, South Carolina, USA. Geomorphology, 126(1-2), 108-120. https://doi.org/10.1016/j.geomorph.2010.10.035 DOI: https://doi.org/10.1016/j.geomorph.2010.10.035
Wohl, E., Scott, D.N., Lininger, K.B. 2018. Spatial distribution of channel and floodplain large wood in forested river corridors of the Northern Rockies. Water Resources Research, 54(10), 7879-7892. https://doi.org/10.1029/2018WR022750 DOI: https://doi.org/10.1029/2018WR022750
Wyżga, B., Zawiejska, J., Mikuś, P., Kaczka, R.J. 2015. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology, 228, 275-285. https://doi.org/10.1016/j.geomorph.2014.09.014 DOI: https://doi.org/10.1016/j.geomorph.2014.09.014
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Ingeniería del Agua
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional