Implementación de embalses en cálculos hidrológicos con Iber
DOI:
https://doi.org/10.4995/ia.2023.18750Palabras clave:
Embalse, Presa, Hidrología, Iber, Laminación, AvenidaResumen
La consideración del efecto laminador de los embalses en la evaluación de caudales de avenida es un aspecto fundamental en aquellas cuencas donde la hidrología está condicionada por la presencia de presas. En este trabajo se presenta la implementación de embalses y presas en el módulo hidrológico del modelo Iber, el cual resuelve las ecuaciones de aguas someras bidimensionales a escala de toda una cuenca. Para la modelización del caudal de salida del embalse se incluyen aliviaderos con y sin compuerta, desagües de fondo y la posibilidad de definir una curva de desagüe ad hoc que relacione el caudal de salida con el nivel del embalse. Como caso de estudio se modeló el efecto del embalse de Iznájar en la hidrología de la cuenca del río Genil, en España. Se consideraron tres hipótesis de cálculo con el fin de comparar el efecto de los diferentes órganos de desagüe definidos en esta nueva implementación en Iber. La metodología definida demuestra ser capaz de representar numéricamente los órganos de gestión del embalse y resolver así una limitación fundamental en el modelado de grandes cuencas con Iber.
Descargas
Citas
Bellos, V., Papageorgaki, I., Kourtis, I., Vangelis, H., Kalogiros, I., Tsakiris, G. 2020. Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm. Natural Hazards, 101(3), 711–726. https://doi.org/10.1007/s11069-020-03891-3
Bladé-Castellet, E., Cea, L., Corestein, G. 2014. Modelización numérica de inundaciones fluviales. Ingeniería Del Agua, 18(1), 68. https://doi.org/10.4995/ia.2014.3144
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004
Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resources Research, 51(7), 5464–5486. https://doi.org/10.1002/2014WR016547
Cea, L., Fraga, I. 2018. Incorporating Antecedent Moisture Conditions and Intraevent Variability of Rainfall on Flood Frequency Analysis in Poorly Gauged Basins. Water Resources Research, 54(11), 8774–8791. https://doi.org/10.1029/2018WR023194
Cea, L., Legout, C., Darboux, F., Esteves, M., Nord, G. 2014. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data. Journal of Hydrology, 513, 142–153. https://doi.org/10.1016/j.jhydrol.2014.03.052
Cea, L, Garrido, M., Puertas, J., Jácome, A., Del Río, H., Suárez, J. 2010. Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 62(9), 1998–2008. https://doi.org/10.2166/wst.2010.746
Cea, Luis, Álvarez, M., Puertas, J. 2022. Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique). Journal of Hydrology: Regional Studies, 44, 101247. https://doi.org/10.1016/j.ejrh.2022.101247
Cea, L., Vila, G., García-Alén, G., Puertas, J., Pena, L. 2022. Hydraulic Modeling of Bridges in Two-Dimensional Shallow Water Models. Journal of Hydraulic Engineering, 148(8), 6022006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001992
Costabile, P., Costanzo, C., Macchione, F. 2012. Comparative analysis of overland flow models using finite volume schemes. Journal of Hydroinformatics, 14(1), 122–135. https://doi.org/10.2166/hydro.2011.077
European Union Copernicus Land Monitoring Service. 2018. European Union, Copernicus Land Monitoring Service. Eur. Environ. Agency.
Fernández-Pato, J., Morales-Hernández, M., García-Navarro, P. 2018. Implicit finite volume simulation of 2D shallow water flows in flexible meshes. Computer Methods in Applied Mechanics and Engineering, 328, 1–25. https://doi.org/10.1016/j.cma.2017.08.050
Ferrer-Polo, F.J. 2000. Recomendaciones para el cálculo hidrometeorológico de avenidas. CEDEX. Centro de Estudios y Experimentación de Obras Públicas.
Fraga, I., Cea, L., Puertas, J. 2013. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient used in distributed urban drainage models. Journal of Hydrology, 505, 266–275. https://doi.org/10.1016/j.jhydrol.2013.10.005
Fraga, I., Cea, L., Puertas, J. 2019. Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrological Processes, 33(1), 160–173. https://doi.org/10.1002/hyp.13319
Fraga, I., Cea, L., Puertas, J., Suárez, J., Jiménez, V., Jácome, A. 2016. Global sensitivity and GLUE-based uncertainty analysis of a 2D-1D dual urban drainage model. Journal of Hydrologic Engineering, 21(5), 1–11. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001335
Francés, F., Vélez, J.I., Vélez, J.J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1–2), 226–240. https://doi.org/10.1016/j.jhydrol.2006.06.032
García-Alén, G., García-Fonte, O., Cea, L., Pena, L., Puertas, J. 2021. Modelling Weirs in Two-Dimensional Shallow Water Models. Water, 13(16), 2152. https://doi.org/10.3390/w13162152
García-Alén, G., González-Cao, J., Fernández-Nóvoa, D., Gómez-Gesteira, M., Cea, L., Puertas, J. 2022. Analysis of two sources of variability of basin outflow hydrographs computed with the 2D shallow water model Iber: Digital Terrain Model and unstructured mesh size. Journal of Hydrology, 612, 128182. https://doi.org/10.1016/j.jhydrol.2022.128182
García-Feal, O., González-Cao, J., Gómez-Gesteira, M., Cea, L., Domínguez, J.M., Formella, A. 2018. An accelerated tool for flood modelling based on Iber. Water (Switzerland), 10(10), 1–23. https://doi.org/10.3390/w10101459
IGN-CNIG. 2021. Instituto Geográfico Nacional. Centro de Descargas Del CNIG. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
Kannan, N., Santhi, C., Williams, J.R., Arnold, J.G. 2007. Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods. Wiley InterScience, 2274(November 2008), 2267–2274. https://doi.org/10.1002/hyp.6811
Liang, D., Özgen, I., Hinkelmann, R., Xiao, Y., Chen, J.M. 2015. Shallow water simulation of overland flows in idealised catchments. Environmental Earth Sciences, 74(11), 7307–7318. https://doi.org/10.1007/s12665-015-4744-5
Marcos, S.R., Belén, M.C., Ernest, B., Irene, S., Arnau, A., Hélène, R., Romu, R. 2020. NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. Journal of Hydrologic Engineering, 25(9), 5020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979
Ministerio de Fomento; Dirección General de Carreteras. 2019. NORMA 5.2–IC de la Instrucción de carreteras, Drenaje superficial. Boletín Oficial del Estado, núm. 136, de 5 de junio de 2018, PP. 58028 a 58030. https://www.boe.es/eli/es/res/2018/03/26/(3)
Ministerio de Medio Ambiente y Medio Rural y Marino. 2013. Mapa de Caudales Máximos (CAUMAX, v2.3). CEDEX. Centro de Estudios y Experimentación de Obras Públicas.
Petaccia, G., Leporati, F., Torti, E. 2016. OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Computational Geosciences, 20(5), 1123–1132. https://doi.org/10.1007/s10596-016-9580-5
Refsgaard, J.C. 1997. Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1–4), 69–97. https://doi.org/10.1016/S0022-1694(96)03329-X
Sánchez, F.J., Lastra, J. 2011. Guía metodológica para el desarrollo del Sistema Nacional de Cartografía de Zonas Inundables. Madrid, Ministerio de Medio Ambiente, y Medio Rural y Marino.
Sanders, B.F., Schubert, J.E. 2019. PRIMo: Parallel raster inundation model. Advances in Water Resources, 126, 79–95. https://doi.org/10.1016/j.advwatres.2019.02.007
Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., Aragón-Hernández, J.L. 2021. Interpreting the Manning Roughness Coefficient in Overland Flow Simulations with Coupled Hydrological-Hydraulic Distributed Models. Water, 13(23), 3433. https://doi.org/10.3390/w13233433
Sanz-Ramos, M., Cea, L., Bladé, E., López-Gómez, D., Sañudo, E., García-Alén, G., Aragón-Hernández, J.L. 2022. Iber v3. Manual de referencia e interfaz de usuario de las nuevas implementaciones. Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE). https://doi.org/10.23967/iber.2022.01
Uber, M., Nord, G., Legout, C., Cea, L. 2021. How do modeling choices and erosion zone locations impact the representation of connectivity and the dynamics of suspended sediments in a multi-source soil erosion model? Earth Surf. Dynam., 9(1), 123–144. https://doi.org/10.5194/esurf-9-123-2021
Xia, X., Liang, Q., Ming, X. 2019. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132, 103392. https://doi.org/10.1016/j.advwatres.2019.103392
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Ingeniería del Agua
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Datos de los fondos
-
European Regional Development Fund
Números de la subvención EAPA_45/2018_AA-FLOODS