Efecto del cambio climático en la calidad del agua de la Cuenca del Júcar

S. Suárez-Almiñana, J. Paredes-Arquiola, Abel Solera

Resumen

En este estudio se analiza el efecto del cambio climático en la calidad del agua de la cuenca del Júcar a partir de estimaciones futuras de aportaciones hidrológicas y temperatura del agua (Ta). Para ello, se utilizó un modelo de calidad de aguas a escala de cuenca con el que se estimó el estado ecológico de todas las masas de agua, basándose en las concentraciones de DBO5, P, NH4+ y NO3para los horizontes futuros 2020, 2050 y 2080. De este análisis se obtuvo un incremento del número de masas con altos niveles de contaminación (80-100% incumplimientos) en los horizontes 2050 y 2080, localizadas sobre todo en la parte media y baja de la cuenca. Además, la degradación de la DBO5 y el NH4+ es muy dependiente de la temperatura del agua, poniendo de manifiesto la importancia de considerar esta variable en el modelo.


Palabras clave

estado ecológico; tasa de cambio futura; temperatura del agua; RREA; incumplimientos

Texto completo:

PDF

Referencias

Ahmad, J.I., Dignum, M., Liu, G., Medema, G., van der Hoek, J.P. 2021. Changes in biofilm composition and microbial water quality in drinking water distribution systems by temperature increase induced through thermal energy recovery. Environmental Research, 194, 110648. https://doi.org/10.1016/j.envres.2020.110648

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. 1998. Large area hydrologic modeling and assessment Part I: Model development. Journal of the American Water Resources Association, 34, 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

Barranco, L., Dimas, M., Jiménez, A., Estrada, F. 2018. Nueva evaluación del impacto futuro del cambio climático en los recursos hídricos en España. Ingeniería Civil, 191, 34-55.

BOE. 2015. Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, Actualidad Jurídica Ambiental.

Bowie, G.L., Mills, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp, G.L., Johnson, K.M., Chan, P.W.H., Gherini, S.A., Chamberlin, C.E. 1985. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. EPA/600/3-. Athens, Georgia: U.S. Environmental Protection Agency.

CEDEX. 2017. Evaluación Del Impacto Del Cambio Climático En Los Recursos Hídricos y Sequías de España. Informe técnico para el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Madrid, España.

CHJ. 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Memoria ciclo de planificación hidrológica 2015-2021. Ministerio de Agricultura, Alimentación y Medio Ambiente. Valencia, España.

European Parliament. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Brussels: Official Journal.

Ferrer, J., Seco, A. 2008. Tratamientos Biológicos de Aguas Residuales. Valencia, España: Universidad Politécnica de Valencia: Alfaomega Grupo Editor.

Flynn, K.F., Suplee, M.W., Chapra, S.C., Tao, H. 2015. Model-Based Nitrogen and Phosphorus (Nutrient) Criteria for Large Temperate Rivers: 1. Model Development and Application. Journal of the American Water Resources Association, 51(2), 421-446. https://doi.org/10.1111/jawr.12253

Gutiérrez, B., de Jalón, D.G., 1999. Modelización térmica de los ríos Cea y Manzanares. Limnetica, 17, 1-12.

Hunink, J., Simons, G., Suárez-Almiñana, S., Solera, A., Andreu, J., Giuliani, M., Zamberletti, P., Grillakis, M., Koutroulis, A., Tsanis, I., Schasfoort, F., Contreras, S., Ercin, E., Bastiaanssen, W. 2019. A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water, 11, 1976. https://doi.org/10.3390/w11101976

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. https://doi.org/10.1017/CBO9781107415324

Jin, L., Whitehead, P.G., Rodda, H., Macadam, I., Sarkar, S. 2018. Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India. Science of the Total Environment, 637-638, 907-17. https://doi.org/10.1016/j.scitotenv.2018.04.349

Jong-Suk, K., Shaleen, J., Joo-Heon, L., Hua, C., Seo-Yeon, P. 2019. Quantitative vulnerability assessment of water quality to extreme drought in a changing climate. Ecological Indicators, 103(March), 688-97. https://doi.org/10.1016/j.ecolind.2019.04.052

Lemos, M.C., Rood, R.B. 2010. Climate Projections and Their Impact on Policy and Practice. Wiley Interdisciplinary Reviews: Climate Change, 1(5), 670-82. https://doi.org/10.1002/wcc.71

Marcos-Garcia, P., Pulido-Velazquez, M. 2017. Cambio Climático y Planificación Hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación? Ingeniería del Agua, 21(1), 35. https://doi.org/10.4995/ia.2017.6361

Naustdalslid, J. 2011. Climate change - The challenge of translating scientific knowledge into action. International Journal of Sustainable Development and World Ecology, 18(3), 243-52. https://doi.org/10.1080/13504509.2011.572303

Paredes-Arquiola, J. 2021. Manual Técnico Del Modelo Respuesta Rápida Del Estado Ambiental (RREA) de Masas de Agua Superficiales Continentales. Universitat Politècnica de València. Valencia, España. https://aquatool.webs.upv.es/files/manuales/rrea/ManualT%C3%A9cnicoModeloRREA_V3.pdf

Pellicer-Martínez, F., Martínez-Paz, J.M. 2016. The Water Footprint as an Indicator of Environmental Sustainability in Water Use at the River Basin Level. Science of the Total Environment, 571, 561-74. https://doi.org/10.1016/j.scitotenv.2016.07.022

Pérez-Martín, M. 2005. Modelo distribuido de simulación del ciclo hidrológico con calidad de aguas integrado en sistemas de información geográfica para grandes cuencas. Aportación al análisis de presiones e impactos de la Directiva Marco Europea del Agua. Universidad Politécnica de Valencia. Valencia, España.

Rocha, J., Carvalho-Santos, C., Diogo, P., Beça, P., Keizer, J.J., Nunes, J.P., 2020. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Science of the Total Environment 736. https://doi.org/10.1016/j.scitotenv.2020.139477

Serpa, D., Nunes, J.P., Keizer, J.J., Abrantes, N. 2017. Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture. Environmental Pollution, 224, 454-65. https://doi.org/10.1016/j.envpol.2017.02.026

Shrestha, S., Bhatta, B., Shrestha, M., Shrestha, P.K. 2018. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Science of the Total Environment, 643, 1610-22. https://doi.org/10.1016/j.scitotenv.2018.06.306

Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., Solera, A. 2017. Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management. Science of the Total Environment, 603-604, 126-39. https://doi.org/10.1016/j.scitotenv.2017.05.259

Suárez-Almiñana, S., Solera, A., Andreu, J., García-Romero, L. 2020a. Análisis de incertidumbre de las proyecciones climáticas en relación a las aportaciones históricas en la Cuenca del Júcar. Ingeniería del Agua, 24(2), 1-12. https://doi.org/10.4995/ia.2020.12149

Suárez-Almiñana, S., Solera, A., Madrigal, J., Andreu, J., Paredes-arquiola, J. 2020b. Risk assessment in water resources planning under climate change at the Júcar River Basin. Hydrology and Earth System Science, 24(11), 5297-5315. https://doi.org/10.5194/hess-24-5297-2020

Témez, J.R. 1977. Modelo matemático de transformación precipitación-aportación. ASINEL.

Trewin, B.C. 2007. Función de las normales climatológicas en un clima cambiante. Edited by O. Baddour and H. Kontongomde. Organización Meteorológica Mundial. Vol. 43. Ginebra.

Wang, Y., Zhang, N., Wang, D., Wu, J. 2020. Impacts of cascade reservoirs on Yangtze River water temperature: Assessment and ecological implications. Journal of Hydrology, 590, 125240. http://doi.org/10.1016/j.jhydrol.2020.125240

Whitehead, P.G., Wilson, E.J., Butterfield, D., Seed, K. 1998. A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): part II - application to large river basins in south Wales and eastern England. Science of the Total Environment, 210, 559-583. https://doi.org/10.1016/S0048-9697(98)00038-2

Xu, L., Li, H., Liang, X., Yao, Y., Zhou, L., Cui, X. 2012. Water quality parameters response to temperature change in small shallow lakes. Physics and Chemistry of the Earth, 47-48, 128-134. https://doi.org/10.1016/j.pce.2010.11.005

Zlatanović, L., van der Hoek, J.P., Vreeburg, J.H.G. 2017. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water Research, 123, 761-772. https://doi.org/10.1016/j.watres.2017.07.019

Abstract Views

591
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia