Análisis de fármacos en aguas residuales de tres hospitales de la ciudad de Puebla, México

L.I. Castro-Pastrana, M. Cerro-López, M.L. Toledo-Wall, L.M. Gómez-Oliván, M.D. Saldívar-Santiago

Resumen

Mediante sus efluentes, los hospitales contribuyen a la ocurrencia de microcontaminantes emergentes como los fármacos, en el agua. Este trabajo cuantificó la presencia de nueve fármacos en las aguas residuales de tres hospitales privados de México con 66, 92 y 120 camas, respectivamente. Las muestras se caracterizaron fisicoquímicamente y, empleando cromatografía líquida de alta resolución acoplada a espectrometría de masas (UPLC-MS/MS), se reportaron las siguientes concentraciones máximas promedio: paracetamol (38740.11±33832.15 ng/L), naproxeno (6321.42±11074.86 ng/L), ketorolaco (1429.80±237.94 ng/L), ibuprofeno (249.46±143.68 ng/L), ranitidina (149.60±303.70 ng/L), hidrocortisona (96.72±57.21 ng/L), dexametasona (33.02±41.23 ng/L), esomeprazol (22.85±24.12 ng/L) y omeprazol (22.50±23.97 ng/L). En aguas tratadas se detectó una reducción del 67 al 100% en los niveles de hidrocortisona, naproxeno, paracetamol y ranitidina. Los resultados obtenidos informan la presencia de fármacos que no habían sido reportados previamente en efluentes hospitalarios mexicanos y demuestran el impacto de las plantas de tratamiento, contribuyendo a la evidencia existente para impulsar acciones de regulación, innovación tecnológica y monitoreo.


Palabras clave

aguas residuales; contaminantes ambientales; contaminantes del agua; cromatografía líquida de alta presión; espectrometría de masas en tándem; preparaciones farmacéuticas

Texto completo:

PDF

Referencias

Aedo, R. 2014. SINGREM, Sistema Nacional de Gestión de Residuos de Envases y Medicamentos A.C. Casos de éxito, XXIII Convención de la Industria Farmacéutica, CANIFARMA, Junio 26, Puerto Vallarta, México.

Alder, A.C., Siegrist, H., Fent, K., Egli, T., Molnar, E., Poiger, T., Schaffner, C., Giger, W. 1997. The Fate of Organic Pollutants in Wastewater and Sludge Treatment: Significant Processes and Impact of Compound Properties. Chimia, 51, 922-928.

Bedner, M., MacCrehan, W.A. 2006. Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environmental Science & Technology, 40(2), 516-22, https://doi.org/10.1021/es0509073

Boix, C., Ibáñez, M., Zamora, T., Sancho, J.V., Niessen, W.M., Hernández, F. 2014. Identification of new omeprazole metabolites in wastewaters and surface waters. Science of the Total Environment, 468-469, 706-14, https://doi.org/10.1016/j.scitotenv.2013.08.095

Boix, C., Ibáñez, M., Bagnati, R., Zuccato, E., Sancho, J.V., Hernández, F., Castiglioni, S. 2016. High resolution mass spectrometry to investigate omeprazole and venlafaxine metabolites in wastewater. Journal of Hazardous Materials, 302, 332-340, https://doi.org/10.1016/j.jhazmat.2015.09.059

Brausch, J.M., Connors, K.A., Brooks, B.W., Rand, G.M. 2012. Human pharmaceuticals in the aquatic environment: a critical review of recent toxocological studies and considerations for toxicity testing. Reviews of Environmental Contamination and Toxicology, 218, 1-99, https://doi.org/10.1007/978-1-4614-3137-4_1

Brubaker, K.L. 1999. Handbook of environmental analysis, third edition. Roy-Keith Smith, Genium Publishing Corporation, Schenectady, New York, USA, https://doi.org/10.1002/ep.670180205

Buckingham, R. (ed). 2020. Martindale: The Complete Drug Reference [online]. Pharmaceutical Press, London, UK, http://www.medicinescomplete.com.udlap.idm.oclc.org/

Castro-Pastrana, L.I., Baños-Medina, M.I., López-Luna, M.A., Torres-García, B.L. 2015. Ecofarmacovigilancia en México: perspectivas para su implementación. Revista Mexicana de Ciencias Farmacéuticas, 46(3), 16-40.

Castro-Pastrana L.I., Palacios-Rosas E., Toledo-Wall M.L., Cerro-López M. 2020. Worldwide Occurrence, Detection, and Fate of Nonsteroidal Anti-inflammatory Drugs in Water. En: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg, https://doi.org/10.1007/698_2020_542

Das, S., Ray, N.M., Wan, J., Khan, A., Chakraborty, T., and Ray, M.B. 2017. Micropollutants in Wastewater: Fate and Removal Processes. En: Farooq, R., Ahmad, Z. 2017. Physico-Chemical Wastewater Treatment and Resource Recovery. IntechOpen, https://doi.org/10.5772/65644

Elliott, S.M., Erickson, M.L., Krall, A.L., Adams, B.A. 2018. Concentrations of pharmaceuticals and other micropollutants in groundwater downgradient from large on-site wastewater discharges. PLoS ONE, 13(11), e0206004, https://doi.org/10.1371/journal.pone.0206004

Feng, L., Van Hullebusch, E. D., Rodrigo, M. A. Esposito, G., Oturan, M.A. 2013. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes: A review. Chemical Engineering Journal, 228, 944-964, https://doi.org/10.1016/j.cej.2013.05.061

Flores-Pérez, C., Flores-Pérez, J., Juárez-Olguín, H., Barranco-Garduño, L. 2008. Frequency of drug consumption and lack of pediatric formulations. Acta Pediátrica de México, 29, 16-20.

Furlong, E.T., Noriega, M.C., Kanagy, C.J., Kanagy, L.K., Coffey, L.J., Burkhardt, M.R. 2014. Determination of human-use pharmaceuticals in filtered water by direct aqueous injection-high-performance liquid chromatography/tandem mass spectrometry. U.S. Geological Survey Techniques and Methods, book 5, chap. B10, https://doi.org/10.3133/tm5B10

Gautam, A.K., Kumar, S., Sabumon, P.C. 2007. Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 83(3), 298-306, https://doi.org/10.1016/j.jenvman.2006.03.009

Gibson, R., Durán-Álvarez, J.C., Estrada, K.L., Chávez, A., Jiménez Cisneros, B. 2010. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 81(11), 1437-1445, https://doi.org/10.1016/j.chemosphere.2010.09.006

Gómez-Oliván, L.M., Islas-Flores, H., San Juan-Reyes, N., Galar-Martínez, M., García-Medina, S., Elizalde-Velázquez, A. 2019. Chapter 6. Oxidative Stress Induced by Water from a Hospital Effluent of the City of Toluca, Mexico, on Hyalella azteca. (pp. 79- 95). En: Gómez-Oliván, L.M. 2019. Pollution of Water Bodies in Latin America. Impact of contaminants on species of ecological interest. Springer Nature Switzerland AG, Cham, Switzerland, https://doi.org/10.1007/978-3-030-27296-8_6

González-González, E.D., Gómez-Oliván, L.M., Galar-Martínez, M., Vieyra-Reyes, P., Islas-Flores, H., García-Medina, S., JiménezVargas, J.M., Razo-Estrada, C., Pérez-Pastén, R. 2014. Metals and Nonsteroidal Anti-inflammatory Pharmaceuticals Drugs Present in Water from Madín Reservoir (Mexico) Induce Oxidative Stress in Gill, Blood, and Muscle of Common Carp (Cyprinus carpio). Archives of Environmental Contamination and Toxicology, 67(2), 281-295, https://doi.org/10.1007/s00244-014-0048-0

Hignite, C., Azarnoff, D.L. 1977. Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sciences, 20(2), 337-341, https://doi.org/10.1016/0024-3205(77)90329-0

Islas-Flores, H., Gómez-Oliván, L.M., SanJuan-Reyes, N., Elizalde-Velázquez, A., Dublán-García, O., Galar-Martínez, M., GarcíaMedina, S., Hernández-Navarro, M.D. 2017. Background to the Emergence of Ecopharmacovigilance. En: Gómez-Oliván L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, 66, Springer Nature Switzerland AG, Cham, Switzerland, https://doi.org/10.1007/698_2017_171

Jaén-Gil, A., Castellet-Rovira, F., Llorca, M., Villagrasa, M., Sarrà, M., Rodríguez-Mozaz, S., Barceló, D. 2019. Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: Biotransformation, sorption and ecotoxicological impact. Water research, 152, 171-180, https://doi.org/10.1016/j.watres.2018.12.054

Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D. 2010. Ocurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165-1176, https://doi.org/10.1016/j.watres.2010.11.010

Konkel L. 2018. Reproductive Headache? Investigating Acetaminophen as a Potential Endocrine Disruptor. Environmental health perspectives, 126(3), 032001, https://doi.org/10.1289/EHP2478

Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C. S. 2012. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. Environmental Science & Technology, 46(3), 1536-1545, https://doi.org/10.1021/es203495d

López-Pacheco, I.Y., Silva-Núñez, A., Salinas-Salazar, C., Arévalo-Gallegos, A., Lizarazo-Holguin, L.A., Barceló, D., Iqbal, H.M.N., Parra-Saldívar, R. 2019. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of The Total Environment, 690, 1068-1088, https://doi.org/10.1016/j.scitotenv.2019.07.052

Luja-Mondragón, M., Gómez-Oliván, L.M., SanJuan-Reyes, N., Islas-Flores, H., Orozco-Hernández, J.M., Heredia-García, G., Galar-Martínez, M., Dublán-García, O. 2019. Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. Science of The Total Environment, 660, 751-764, https://doi.org/10.1016/j.scitotenv.2019.01.072

Macikova, P., Groh, K.J., Ammann, A.A., Schirmer, K., Suter, M.J.F. 2014. Endocrine disrupting compounds affecting corticosteroid signaling pathways in Czech and Swiss waters: potential impact on fish. Environmental science & technology, 48(21), 12902- 12911, https://doi.org/10.1021/es502711c

Majumder, A., Gupta, B., Gupta, A.K. 2019. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environmental Research, 176, 108542, https://doi.org/10.1016/j.envres.2019.108542

Mayoudom, E.V.T., Nguidjoe, E., Mballa, R.N., Tankoua, O.F., Fokunang, C., Anyakora, C., Blackett, K.N. 2018. Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF. Environmental Monitoring and Assessment, 190(12), https://doi.org/10.1007/s10661-018-7097-1

Muñoz, C.J.E. 2012. Contaminantes emergentes: aspectos químicos, microbiológicos y de salud. (pp. 19-27). En Moeller, G., Buelna, G. (eds.) 2012. Contaminantes emergentes: su importancia, retos y perspectivas sobre la medición, el tratamiento y la reglamentación. IMTA, Jiutepec, México. Nagarnaik, P.M., Batt, A.L., Boulanger, B. 2012. Healthcare Facility Effluents as Point Sources of Select Pharmaceuticals to Municipal Wastewater. Water Environment Research, 84(4), 339-345, https://doi.org/10.1002/j.1554-7531.2012.tb00282.x

Neri-Cruz, N., Gómez-Oliván, L.M., Galar-Martínez, M., del Socorro Romero-Figueroa, M., Islas-Flores, H., García-Medina, S., Jiménez-Vargas, J.M., SanJuan-Reyes, N. 2015. Oxidative stress in Cyprinus carpio induced by hospital wastewater in Mexico. Ecotoxicology, 24, 181-193, https://doi.org/10.1007/s10646-014-1371-y

Olalla, A., Negreira, N., López de Alda, M., Barceló, D., Valcárcel, Y. 2018. A case study to identify priority cytostatic contaminants in hospital effluents. Chemosphere, 190, 417-430, https://doi.org/10.1016/j.chemosphere.2017.09.129

Oliveira, T. S., Murphy, M., Mendola, N., Wong, V., Carlson, D., Waring, L. 2015. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Science of The Total Environment, 518-519, 459-478, https://doi.org/10.1016/j.scitotenv.2015.02.104

Oliveira, T.S., Al Aukidy, M., Verlicchi, P. 2017. Occurrence of Common Pollutants and Pharmaceuticals in Hospital Effluents. Springer, Cham, Switzerland, 17-32, https://doi.org/10.1007/698_2017_9

Olvera-Néstor, C. G., Morales-Avila, E., Gómez-Olivan, L. M., Galár-Martínez, M., García-Medina, S., Neri-Cruz, N. 2016. Biomarkers of Cytotoxic, Genotoxic and Apoptotic Effects in Cyprinus carpio Exposed to Complex Mixture of Contaminants from Hospital Effluents. Bulletin of environmental contamination and toxicology, 96(3), 326-332, https://doi.org/10.1007/s00128-015-1721-3

Ortega Soto, H.H., Ramírez García, J.J., Gamboa Suárez, P., Dávila Estrada, A.M. 2017. Determination of Ketorolac in the Effluent from a Hospital Treating Plant and Kinetics Study of Its Photolytic Degradation. International Journal of Photoenergy, 2017, https://doi.org/10.1155/2017/6781310

Pérez-Alvarez, I., Islas-Flores, H., Gómez-Oliván, L.M., Barceló, D., López De Alda, M., Pérez Solsona, S., SánchezAceves, L., SanJuan-Reyes, N., Galar-Martínez, M. 2018. Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environmental Pollution, 240, 330-341, https://doi.org/10.1016/j.envpol.2018.04.116

PROFEPA, Procuraduría Federal de Protección al Ambiente. 1997. NOM-001-SEMARNAT-1996. Norma Oficial Mexicana que establece los límites máximos permisibles de contaminantes en las descargas residuales en aguas y bienes nacionales. Secretaría del Medio Ambiente y Recursos Naturales, Distrito Federal, México, Enero 6, 1997, http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/SGAA-15-13.pdf

PROFEPA, Procuraduría Federal de Protección al Ambiente. 1998. NOM-002-SEMARNAT-1996. Norma Oficial Mexicana que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado urbano o municipal. Secretaría del Medio Ambiente y Recursos Naturales, Distrito Federal, México, Junio 3, 1998, http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/SGAA-15-13.pdf

Ramos-Alvariño, C. 2008. Aguas residuales generadas en hospitales. Revista Ingeniería Hidráulica y Ambiental, 29(2), 56-60.

Rivera-Jaimes, J.A., Postigo, C., Melgoza-Alemán, R.M., Aceña, J., Barceló, D., López de Alda, M. 2018. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of The Total Environment, 613-614, 1263-1274, https://doi.org/10.1016/j.scitotenv.2017.09.134

Sánchez-Cuén, J.A., Irineo-Cabrales, A.B., Bernal-Magaña, G., Peraza-Garay, F.J. 2013. Inadequate prescription of chronic consumption of proton pump inhibitors in a hospital in Mexico: Cross-sectional study. Revista Española de Enfermedades Digestivas, 105(3), 131-137, https://doi.org/10.4321/S1130-01082013000300003

Sánchez-González, E.G., Espinosa-Contreras, C., García-Domínguez, J.C., Hernández-Abad, V.J. 2013. Diseño e implementación de un programa de recolección y clasificación sistemática de medicamentos no útiles en un Hospital de tercer nivel. Revista Mexicana de Ciencias Farmacéuticas, 44(2), 46-54.

San Juan-Reyes, N., Gómez-Oliván, L.M., Islas-Flores, H., Galar-Martínez, M., García-Medina, S., Pérez-Pastén Borja, R. 2019. Toxicity produced by an industrial effluent from Mexico on the common carp (Cyprinus carpio). En: Gómez-Oliván, L.M. 2019. Pollution of Water Bodies in Latin America. Impact of contaminants on species of ecological interest. Springer Nature Switzerland AG, Cham, Switzerland, 23-41, https://doi.org/10.1007/978-3-030-27296-8_2

Santos, L.H., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B. 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461, 302-316, https://doi.org/10.1016/j.scitotenv.2013.04.077

Sauvé, S., Desrosiers, M. 2014. A review of what is an emerging contaminant. Chemistry Central Journal, 8(15), 1-7, https://doi.org/10.1186/1752-153X-8-15

Secretaría de Comercio y Fomento Industrial. 1980. Norma Mexicana NMX-AA-003-1980. Aguas Residuales - Muestreo. SINEC, México, D.F., Marzo 25, 1980, https://www.gob.mx/cms/uploads/attachment/file/166762/NMX-AA-003-1980.pdf

Secretaría de Comercio y Fomento Industrial. 2000. NMX-AA-093-SCFI-2000 Análisis de agua-Determinación de la conductividad electrolítica.- Método de prueba. SINEC, México, Diciembre 18, 2000, https://www.gob.mx/cms/uploads/attachment/file/166800/ NMX-AA-093-SCFI-2000.pdf

Secretaría de Economía. 2001. NMX-AA-028-SCFI-2001 Análisis de agua-Determinación de la demanda bioquímica de oxígeno en aguas naturales, residuales (DBO5) y residuales tratadas-Método de prueba. SINEC, México, Abril 17, 2001, https://www.gob.mx/cms/uploads/attachment/file/166771/NMX-AA-028-SCFI-2001.pdf

Secretaría de Economía. 2013. NMX-AA-030/1-SCFI-2012 Análisis de agua- Medición de la demanda química de oxígeno en aguas naturales, residuales y residuales tratadas.- Método de prueba. Parte 1 - Método de reflujo abierto. SINEC, México, Mayo 21, 2013, https://www.gob.mx/cms/uploads/attachment/file/166774/NMX-AA-030-1-SCFI-2012.pdf

Secretaría de Economía. 2014. NMX-AA-007-SCFI-2013 Análisis de agua - Medición de la temperatura en aguas naturales, residuales y residuales tratadas - Método de prueba. SINEC, México, Enero 23, 2014, https://www.gob.mx/cms/uploads/ attachment/file/166766/nmx-aa-007-scfi-2013.pdf

Secretaría de Economía. 2016. NMX-AA-008-SCFI-2016 Análisis de agua - Medición de pH en aguas naturales, residuales y residuales tratadas - Método de prueba. SINEC, México, Septiembre 9, 2016, https://www.gob.mx/cms/uploads/attachment/ file/166767/NMX-AA-008-SCFI-2016.pdf

Secretaría de Medio Ambiente y Recursos Naturales. 2003. Norma Oficial Mexicana NOM-087-ECOL-SSA1-2002, Protección ambiental, salud ambiental, residuos peligrosos biológico-infecciosos. Clasificación y especificaciones de Manejo. Secretaría de Salud, Distrito Federal, México, Febrero 17, 2003, http://www.salud.gob.mx/unidades/cdi/nom/087ecolssa.html

Shoemaker, J.A., Bassett, M. 2005. Method 535: Measurement of chloroacetanilide and chloroacetamide herbicide degradates in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). U.S. Environmental Protection Agency, Washington, DC, https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=103915∼ pleSearch=1&searchAll=535

Siemens, J., Huschek, G., Siebe, C., Kaupenjohann, M. 2008. Concentrations and mobility of human pharmaceuticals in the world's largest wastewater irrigation system, Mexico City-Mezquital Valley. Water Research, 42(8-9), 2124-34, https://doi.org/10.1016/j.watres.2007.11.019

Souza, F.S., Féris, L.A. 2016. Hospital and Municipal Wastewater: Identification of Relevant Pharmaceutical Compounds. Water Environment Research, 88(9), 871-877, https://doi.org/10.2175/106143016X14609975747603

Tenorio-Chávez, P., Cerro-López, M., Castro-Pastrana, L.I., Ramírez-Rodrigues, M.M., Orozco-Hernández, J.M., Gómez-Oliván, L.M. 2020. Effects of effluent from a hospital in Mexico on the embryonic development of zebrafish, Danio rerio. Science of The Total Environment, 727, https://doi.org/10.1016/j.scitotenv.2020.138716

Watts, C.D., Crathorne, B., Fielding, M., Stell, C.P. 1983. Analysis of Organic Micropollutants in Water. Reidal Publishing Co, Derdrecht, Germany, 120-131. https://doi.org/10.1007/978-94-009-6345-0_13

Wu, B., Zhang, Y., Hong, H., Hu, M., Liu, H., Chen, X., Liang, Y. 2019. Hydrophobic organic compounds in drinking water reservoirs: Toxic effects of chlorination and protective effects of dietary antioxidants against disinfection by-products. Water Research, 166, 115041, https://doi.org/10.1016/j.watres.2019.115041

Abstract Views

2029
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996     ISSN: 1134-2196   

  

https://doi.org/10.4995/ia