Caracterização dos reservatórios de água para consumo humano em Portugal
DOI:
https://doi.org/10.4995/ia.2021.13659Palabras clave:
reservatórios, tempo de mistura, volume de renovação, qualidade da água para consumo humanoResumen
Os reservatórios de água para consumo humano permitem garantir reservas de água nos sistemas de abastecimento e gerir variações do consumo. Contudo, a sua configuração e os modos de operação podem ter implicações na qualidade da água distribuída. Este trabalho apresenta uma caracterização dos reservatórios de água em Portugal, incidindo nas características físicas e operacionais que condicionam o seu desempenho do ponto de vista da mistura e renovação da água. Foi pela primeira vez avaliada a mistura da água nos reservatórios portugueses, pela determinação das frações de volumes de renovação necessárias para garantir a mistura da água que entra em cada ciclo de enchimento com a já existente. Os resultados mostram que a mistura é garantida em cerca de 74% das células circulares e que a variação de nível necessária para tal num ciclo de enchimento é, em média, de 51%.
Descargas
Citas
Chuo, P.Y., Ball, J.E., Fisher, I.H. 2003. Thermal stratification in drinking water service reservoirs. Australasian Journal of Water Resources, 6(2), 159-167. https://doi.org/10.1080/13241583.2003.11465219
Cherchi, C., Badruzzaman, M., Oppenheimer, J., Bros, C.M., Jacangelo, J.G. 2015. Energy and water quality management systems for water utility's operations: A review. Journal of Environmental Management, 153, 108-120. https://doi.org/10.1016/j.jenvman.2015.01.051
Clark, R.M., Abdesaken, F., Boulos, P.F., Mau, R.E. 1996. Mixing in Distribution System Storage Tanks: Its Effect on Water Quality. Journal of Environmental Engineering, 122(9), 814-821. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:9(814)
Grayman, W.M., Rossman, L.A., Deininger, R.A., Smith, C.D. Smith, Arnold, C.N., Smith, J.F. 2004. Mixing and ageing of water in distribution system storage facilities. Journal of the American Water Works Association, 96(9), pp. 70-80. https://doi.org/10.1002/j.1551-8833.2004.tb10704.x
McCormick, G., Powell, R. 2003. Optimal Pump Scheduling in Water Supply Systems with Maximum Demand Charges. Journal of Water Resources Planning and Management, 129(5), 372-379. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:5(372)
Nordblom O., Bergdahl, L. 2004. Initiation of Stagnation in Drinking Water Storage Tanks. Journal of Hydraulic Engineering, 130(1), 49-57. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:1(49)
Rossman, L.A. 2000. EPANET 2 User's Manual. Cincinnati, USA: U. S. Environmental Protection Agency, 2000.
Rossman, L.A., Grayman, W.M. 1999. Scale-Model Studies of Mixing in Drinking Water Storage Tanks. Journal of Environmental Engineering, 125(8), 755-761. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(755)
Tian, X., Roberts, P.J.W. 2008a. Mixing in water storage tanks. I: No buoyancy effects. Journal of Environmental Engineering, 134(12), 974-985. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:12(974)
Tian, X., Roberts, P.J.W. 2008b. Mixing in water storage tanks. II: with buoyancy effects. Journal of Environmental Engineering, 134(12), 986-995. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:12(986)
Zhang J. 2012. Passive and Active Methods for Enhancing Water Quality of Service Reservoir. Journal of Hydraulics Engineering, 139(7), 745-753. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000730
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional