Las ecuaciones de Saint Venant para la modelización de avalanchas de nieve densa
DOI:
https://doi.org/10.4995/ia.2020.12302Palabras clave:
modelización numérica, 2D-SWE, fluidos no-Newtonianos, avalanchas de nieveResumen
La creciente preocupación por los riesgos naturales, como las avalanchas de nieve, ha propiciado el desarrollo de modelos numéricos ad hoc como una herramienta de soporte para su análisis y evaluación. Los modelos existentes para simulación de aludes se basan en la conservación de la masa y de la cantidad de movimiento, que son unas ecuaciones similares a las ecuaciones de Saint Venant para agua con diferencias sólo en los términos de fricción (modelo reológico). Este documento muestra las posibilidades de estas ecuaciones para simular avalanchas de placa-densa y el tratamiento numérico realizado en Iber. Se ha empleado una nueva metodología para equilibrar el término fuente y el vector de flujo evitando así oscilaciones espurias y movimientos no reales, y que modifica la pendiente de fondo en base a los parámetros del fluido y así detener su movimiento. La herramienta se ha probado en dos casos de estudio para analizar el comportamiento del fluido en función de los parámetros del modelo reológico.
Descargas
Citas
Adewale, F.J., Lucky, A.P., Oluwabunmi, A.P., Boluwaji, E.F. 2017. Selecting the most appropriate model for rheological characterization of synthetic based drilling mud. Int. J. Appl. Eng. Res., 12, 7614-7629.
Ancey, C. 2006. Dynamique des avalanches. École Polytechnique Fédérale de Lausanne, Lausanne (Suisse).
Ancey, C., Gervasoni, C., Meunier, M. 2004. Computing extreme avalanches. Cold Reg. Sci. Technol., 39, 161-180. https://doi.org/10.1016/j.coldregions.2004.04.004
Anderson, J.D. 1995. Computational Fluid Dynamics: The basis with applications, 6th Ed. ed. McGraw-Hill, Inc. London.
Barbolini, M., Issler, D. 2006. Avalanche Test Sites and Research Equipment in Europe An Updated Overview. SATSIE Project Team. Accesible at http://satsie.ngi.no/docs/satsie_d08.pdf.
Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF.
Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242-254. https://doi.org/10.3189/S002214300000174X
Bartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837-850. https://doi.org/10.3189/2015JoG14J126
Beguería, S., W. J. Van Asch, T., Malet, J.P., Gröndahl, S. 2009. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat. Hazards Earth Syst. Sci. 9, 1897-1909. https://doi.org/10.5194/nhess-9-1897-2009
Bermúdez, A., Dervieux, A., Desideri, J.A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49-72. https://doi.org/10.1016/S0045-7825(97)85625-3
Bingham, E.C. 1916. An investigation of the laws of plastic flow. Bull. Bur. Stand., 13, 309-353. https://doi.org/10.6028/bulletin.304
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 30, 1-10. https://doi.org/10.1016/j.rimni.2012.07.004
Bladé, E., Gómez-Valentín, M. 2006. Modelación del flujo en lámina libre sobre cauces naturales. Análisis integrado en una y dos dimensiones. Centro Internacional de Métodos Numéricos en Ingeniería. Monografía CIMNE no 97, Junio 2006.
Blagovechshenskiy, V., Eglit, M., Naaim, M. 2002. The calibration of an avalanche mathematical model using field data. Nat. Hazards Earth Syst. Sci., 2, 217-220. https://doi.org/10.5194/nhess-2-217-2002
Cea, L. 2005. An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Tesis Dr. Universidad da Coruña.
Cea, L., Puertas, J., Vázquez-Cendón, M.E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303-341. https://doi.org/10.1007/s11831-007-9009-3
Chaudhry, M.H. 2008. Open-channel flow: Second Edition, Open-Channel Flow: Second Edition. Springer Science+Business Media, LLC. https://doi.org/10.1007/978-0-387-68648-6
Christen, M., Bartelt, P., Gruber, U. 2002. AVAL-1D: An avalanche dynamics program for the practice, in: International Congress Interpraevent. Pacific Rim, 14-18 October 2002, Matsumoto, Japan, pp. 715-725.
Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D - numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report.
Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
Deardorff, J.W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453-480. https://doi.org/10.1017/S0022112070000691
Dent, J.D., Lang, T.E. 1983. A biviscous modified Bingham model of snow avalanche motion. Ann. Glaciol., 4, 42-46. https://doi.org/10.3189/S0260305500005218
Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol, 61, 875-888. https://doi.org/10.3189/2015JoG14J168
Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217-228. https://doi.org/10.5194/tc-11-217-2017
Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472-1481. https://doi.org/10.1016/j.envsoft.2007.01.001
Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610-623. https://doi.org/10.1139/t95-063
Hungr, O., McDougall, S. 2009. Two numerical models for landslide dynamic analysis. Comput. Geosci. 35, 978-992. https://doi.org/10.1016/j.cageo.2007.12.003
ICSI-IAHS, 1981. Avalanche atlas; illustrated international avalanche classification. International Commission on Snow and Ice of the International Association of Hydrological Sciences. UNESCO, Courvoisier SA, París, France.
Issler, D., Harbitz, C.B., Kristensen, K., Lied, K., Moe, A.S., Barbolini, M., De Blasio, F. V., Khazaradze, G., McElwaine, J.N., Mears, A.I., Naaim, M., Sailer, R. 2005. A comparison of avalanche models with data from dry-snow avalanches at Ryggfonn, Norway. Landslides Avalanches ICFL 2005 Norw. 173-179.
Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November-1 December 1999. pp. 1-15.
Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227-238. https://doi.org/10.1139/t00-100
Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: International Snow Science Workshop. ISSW 2013. At: Grenoble Chamonix-Mont-Blanc, France, pp. 591-598.
Naef, D., Rickenmann, D., Rutschmann, P., McArdell, B.W. 2006. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci., 6, 155-165. https://doi.org/10.5194/nhess-6-155-2006
Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190-198. https://doi.org/10.1016/j.coldregions.2010.08.011
Orszag, S.A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363-386. https://doi.org/10.1017/S0022112070000642
Pitsch, H. 2006. Large-Eddy simulation turbulent combustion. Annu. Rev. Fluid Mech., 38, 453-482. https://doi.org/10.1146/annurev.fluid.38.050304.092133
Reynolds, O. 2006. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 186, 123-164. https://doi.org/10.1098/rsta.1895.0004
Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations, in: Morton, K.W., Baines, M.J. (Eds.), Numerical Methods for Fluid Dynamics II. pp. 59-80.
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603
Sagaut, P. 2001. Large Eddy Simulation for incompressible flows. An introduction. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-04416-2
Salm, B. 1993. Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol., 18, 221-226. https://doi.org/10.1017/S0260305500011551
Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109-124. https://doi.org/10.4995/ia.2018.8880
Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177-215. https://doi.org/10.1017/S0022112089000340
Scheidl, C., Rickenmann, D., McArdell, B.W. 2013. Runout Prediction of Debris Flows and Similar Mass Movements, in: Margottini C., Canuti P., Sassa K. (Eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_30
Schweizer, J., Jamieson, J.B., Schneebeli, M. 2003. Snow avalanche formation. Rev. Geophys. 41. https://doi.org/10.1029/2002RG000123
Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science.
Thibert, E., Bellot, H., Ravanat, X., Ousset, F., Pulfer, G., Naaim, M., Hagenmuller, P., Naaim-Bouvet, F., Faug, T., Nishimura, K., Ito, Y., Baroudi, D., Prokop, A., Schön, P., Soruco, A., Vincent, C., Limam, A., Héno, R. 2015. The full-scale avalanche test-site at Lautaret Pass (French Alps). Cold Reg. Sci. Technol., 115, 30-41. https://doi.org/10.1016/j.coldregions.2015.03.005
Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (Heidelberg). https://doi.org/10.1007/b79761
Torralba-Conill, A. 2017. Implementation of a two-dimensional model for simulating Snow Avalanches. Universitat Politècnica de Catalunya.
Torralba, A., Bladé, E., Oller, P. 2017. Implementació d'un model bidimensional per a simulació d'allaus de neu densa, in: V Jornades Tècniques de Neu i Allaus: Pyrenean Symposium on Snow and Avalanches. Ordino, Andorra.
Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 15. http://doi.org/10.5169/seals-61891
Wever, N., Vera Valero, C., Techel, F. 2018. Coupled Snow Cover and Avalanche Dynamics Simulations to Evaluate Wet Snow Avalanche Activity. J. Geophys. Res. Earth Surf., 123, 1772-1796. https://doi.org/10.1029/2017JF004515
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional