Análisis numérico 3D de las características del flujo en un canal curvo

E. Sánchez-Cordero, M. Gómez, E. Bladé

Resumen

El presente trabajo muestra un análisis numérico 3D del comportamiento del flujo de agua en un canal curvo influenciado por la presencia de un vertedero y una compuerta. La simulación numérica se realizó utilizando el software de Dinámica de Fluidos Computacional (CFD) basado en el método de volúmenes finitos (FVM) – OpenFOAM. En el modelo numérico la turbulencia se trata con la metodología RANS (k–ε, k–ω, y RNG k–ε) y se usa el método VOF (Volume of Fluid) para la captura de la superficie libre del agua. Los resultados numéricos obtenidos se evalúan al compararlos con los valores experimentales de calado en diferentes puntos dentro del dominio. Los valores de calado se midieron haciendo uso de sensores de nivel de agua y limnímetros. De esta manera, los resultados numéricos tridimensionales obtenidos son utilizados para analizar las líneas de corriente, las componentes de velocidades y los flujos secundarios.


Palabras clave

análisis tridimensional; canal curvo; RANS; VOF; OpenFOAM.

Texto completo:

PDF

Referencias

Celik, I., Ghia, U., Roache, P., Freitas, C. 2008. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, 130(7), 1-4. https://doi.org/10.1115/1.2960953

Gholami, A., Akbar Akhtari, A., Minatour, Y., Bonakdari, H., Javadi, A.A. 2014. Experimental and Numerical Study on Velocity Fields and Water Surface Profile in a Strongly-Curved 90° Open Channel Bend. Engineering Applications of Computational Fluid Mechanics, 8(3), 447-461. https://doi.org/10.1080/19942060.2014.11015528

Gómez M., Martínez-Gomariz E. 2016. 1D, 2D, and 3D Modeling of a PAC-UPC Laboratory Canal Bend. In: Gourbesville P., Cunge J., Caignaert G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_29

Ippen, A.T., Drinker, P.A. 1962. Boundary Shear Stresses in Curved Trapezoidal Channels. Journal of the Hydraulics Division, 88(5), 143-180.

Kalkwijk, J.P.T., de Vriend, H.J. 1980. Computational of the flow in shallow river bends. Journal of Hydraulic Research, 18(4), 327-342. https://doi.org/10.1080/00221688009499539

Launder, B.E., Spalding, D.B. 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289. https://doi.org/10.1016/0045-7825(74)90029-2

MacCormack, R.W., Paullay, A.J. 1972. Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. American Institute of Aeronautics and Astronautics, AIAA paper 72-154. https://doi.org/10.2514/6.1972-154

MacDonald, P.W. 1971. The Computation of Transonic Flow Through Two- Dimensional Gas Turbine Cascades. American Society of Mechanical Engineers, (Paper 71-GT-89). https://doi.org/10.1115/71-GT-89

Naji Abhari, M., Ghodsian, M., Vaghefi, M., Panahpur, N. 2010. Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation, 21(3), 292-298. https://doi.org/10.1016/j.flowmeasinst.2010.03.002

Ramamurthy, A.S., Han, S.S., Biron, P.M. 2013. Three-Dimensional Simulation Parameters for 90° Open Channel Bend Flows. Journal of Computing in Civil Engineering, 27(3), 282-291. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000209

Rozovskiĭ, I. 1957. Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, Kiev, USSR (translated by the Israel Program for Scientific Translations, Jerusalem, 1961), Academy of Sciences of the Ukrainian SSR; Israel Program for Scientific Translations]; Kiev;[Washington D.C. available from the Office of Technical Services U.S. Dept. of Commerce].

Wilcox, D.C. 1994. Turbulence Modeling for CFD. (C.D. La Canada and Industries, eds.), DCW Industries, La Canada, California (USA).

Yakhot, V., Orszag, S.A. 1986. Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, Kluwer Academic/Plenum Publishers, 1(1), 3-51. https://doi.org/10.1007/BF01061452

Abstract Views

875
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Influence of Erodible Beds on Shallow Water Hydrodynamics during Flood Events
David Santillán, Luis Cueto-Felgueroso, Alvaro Sordo-Ward, Luis Garrote
Water  vol: 12  num.: 12  primera página: 3340  año: 2020  
doi: 10.3390/w12123340



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Universitat Politècnica de València

Fundación para el Fomento de la Ingeniería del Agua

e-ISSN: 1886-4996  ISSN: 1134-2196

https://doi.org/10.4995/ia