Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro

Autores/as

  • F. Castro Carrera Pontificia Universidad Católica del Ecuador
  • E.J. La Motta Universidad de Nueva Orleans

DOI:

https://doi.org/10.4995/ia.2020.12260

Palabras clave:

autolimpieza, tensión de corte, velocidad autolimpiante, diseño, alcantarillado sanitario

Resumen

Este artículo presenta herramientas gráficas para diseño de tuberías de alcantarillado sanitario con autolimpieza por tensión de corte, para diámetros entre 100 y 400 mm, usando dos diferentes criterios: primero, considerando la suposición que con el caudal mínimo se desarrollará un esfuerzo cortante igual al generado por la tubería llena a una velocidad de 0.6, 0.7 y 0.8 m/s, y segundo, usando tensiones de corte mínimas de 0.867, 1.4 y 2 N/m2. Estas herramientas consisten en curvas para determinar la pendiente de autolimpieza, la profundidad relativa, el caudal máximo que puede ser transportado con una profundidad relativa de 0.8D, y las velocidades para flujo lleno y parcialmente lleno para un caudal mínimo dado. También se incluyen ecuaciones para determinar tanto un valor aproximado de la pendiente de autolimpieza, como la pendiente exacta. Se consideró un coeficiente de rugosidad de Manning constante de 0.009 s/m1/3, correspondiente a tuberías nuevas de PVC.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

F. Castro Carrera, Pontificia Universidad Católica del Ecuador

Facultad de Ingeniería

E.J. La Motta, Universidad de Nueva Orleans

Departamento de Ingeniería Civil

Citas

Anta, J., Suárez, J., Jácome, A., Regueiro-Picallo, M., Puertas, J., Naves, J., Recarey, M. (2018). SEDUNIT Project: Study of the accumulation, erosion and sediment transport of cohesive solids in combined sewer systems, WIT Transactions on Ecology and the Environment, 228, 1-8. https://doi.org/10.2495/WP180011

Arthur, S., Ashley, R., Tait, S., Nalluri, C. (1999). Sediment Transport in Sewers - A Step Towards the Design of Sewers to Control Sediment Problems. In Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 9-19. https://doi.org/10.1680/iwtme.1999.31264

ASCE - WEF. (2007). Gravity Sanitary Sewer Design and Construction. ASCE Manuals and Reports on Engineering Practice NO. 60. WEF Manual of Practice No. FD-5. (Segunda). ASCE, Reston, Virginia, USA.

ASCE - WPCF. (1969). Design and construction of sanitary and storm sewers. Manual Rep. No. 9.

ASCE - WPCF. (1982). Gravity Sanitary Sewer Design and Construction. ASCE Manuals and Reports on Engineering Practice NO. 60. WPCF Manual of Practice No. FD-5. ASCE, New York, USA.

Bakalian, A., Wright, A., Otis, R., de Azevedo Netto, J. (1994). Simplified Sewerage: Design Guidelines. Water and Sanitation Report, 7. Washington, DC 20433 USA.

Banasiak, R., Tait, S. (2008). The reliability of sediment transport predictions in sewers: influence of hydraulic and morphological uncertainties, Water Science & Technology, 57(9), 1317-1327, https://doi.org/10.2166/wst.2008.297

Bishop, R. R. (1978). Hydraulic Characteristics of PVC Pipe in Sanitary Sewers (A Report of Field Measurements). Reports. Paper 598. Recuperado de https://digitalcommons.usu.edu/water_rep/598/

Bong, C. H. J. (2014). A Review on the Self-Cleansing Design Criteria for Sewer System. Universiti Malaysia Sarawak UNIMAS E-Journal of Civil Engineering, 5(2), 1-7. https://doi.org/10.33736/jcest.132.2014

British Standards Institution. (2017). BS EN 16933-2:2017. Drain and sewer systems outside buildings - Design. Part 2: Hydraulic design. BSI.

Butler, D., Davies, J. W. (2011). Urban Drainage. 3rd Ed. Taylor & Francis, Ed. Oxon.

Butler, D., Digman, C., Makropoulos, C., Davies, J. W. (2018). Urban Drainage, 4th Ed. Boca Raton, EUA: CRC Press, Taylor and Francis Group.

Butler, D., May, R., Ackers, J. (1996a). Sediment Transport in Sewers, Part 2: Design. In Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy. https://doi.org/10.1680/iwtme.1996.28432

Butler, D., May, R., Ackers, J. (2003). Self-Cleansing Sewer Design Based on Sediment Transport Principles. Journal of Hydraulic Engineering, 129(4), 276-282. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(276)

Butler, D., May, R. W. P., Ackers, J. C. (1996b). Sediment transport in sewers, Part 1: Background. Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 118(2), 103-112. https://doi.org/10.1680/iwtme.1996.28431

Camp, T. R. (1946). Sewage Works. Sewage Works Journal, 18(1), 3-16.

Ebtehaj, I., Bonakdari, H., Sharifi, A. (2014). Design criteria for sediment transport in sewers based on self-cleansing concept. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(11), 914-924, https://doi.org/10.1631/jzus.A1300135

Enfinger, K., Mitchell, P. (2010). Scattergraph Principles and Practice: Evaluating Self-Cleansing in Existing Sewers Using the Tractive Force Method. ADS Environmental Services. https://doi.org/10.1061/41114(371)453

Fair, G. M., Geyer, J. C., Okun, D. A. (1966). Water and Wastewater Engineering. Volume 1 Water Supply and Wastewater Removal. New York, USA: I. John Wiley and Sons, Ed.

Ghani, A. (1993). Sediment Transport in Sewers. PhD Thesis. University of Newcastle Upon Tyne. England. Recuperado de https://www.researchgate.net/publication/271452785_Sediment_transport_in_Sewers

GLUMRB. (2014). Recommended Standards for Wastewater Facilities, A Report of the Wastewater Committee of the Great Lakes - Upper Mississippi River, Board of State and Provincial Public Health and Environmental Managers. Albany, N.Y., USA.

Guzmán, K., La Motta, E. J., McCorquodale, J. A., Rojas, S., Ermogenous, M. (2007). Effect of Biofilm Formation on Roughness Coefficient and Solids Deposition in Small-Diameter PVC Sewer Pipes. Journal of Environmental Engineering, ASCE, 133(4), 364-371. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(364)

Haestad Methods, Walski, T. M., Barnard, T. E., Harold, E., Merritt, L. B., Walker, N., Whitman, B. E. (2004). Wastewater collection system modeling and design. Waterbury, CT, USA: Haestad Press.

Hager, W. H. (2010). Wastewater Hydraulics. Theory and Practice, 2nd Ed. Springer. https://doi.org/10.1007/978-3-642-11383-3

Houghtalen, R. J., Akan, A. O., Hwang, N. H. C. (2017). Fundamentals of Hydraulic Engineering Systems. 5th Ed. Pearson.

Mara, D., Sleight, A., Tayler, K. (2001). PC-based Simplified Sewer Design 1st Ed. School of Civil Engineering, University of Leeds, LEEDS LS2 9JT, England. Recuperado de https://assets.publishing.service.gov.uk/media/57a08d4ee5274a31e00017aa/R7535-simplified_sewerage_manual_full.pdf

Melo, J. C. (2005). The Experience of Condominial Water and Sewerage Systems in Brazil: Case Studies from Brasilia, Salvador and Parauapebas. Lima, Perú.

Merritt, L. B. (2009). Tractive Force Design for Sanitary Sewer Self-Cleansing. Journal Of Environmental Engineering, ASCE, 135(12). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000105

Metcalf y Eddy, I. (1981). Wastewater Engineering: Collection and Pumping of Wastewater. (G. Tchobanoglous, Ed.). USA: McGraw-Hill.

Ministerio de Vivienda Ciudad y Territorio. (2012). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico – RAS, Título D Sistemas de Recolección y Evacuación de Aguas Residuales Domésticas y Aguas Lluvias. 2ª Ed. Bogotá, Colombia.

Nalluri, C., Ghani, A. (1996). Design options for self-cleansing storm sewers. Water Science and Technology, 33(9), 215–220. https://doi.org/10.2166/wst.1996.0214

PVC Pipe Association. (2012). Handbook of PVC Pipe Design and Construction, 5th Ed. Industrial Press, Inc.

Seco I., Gómez-Valentín M., Schellart A. y Tait S. (2014). Erosion resistance and behaviour of highly organic in-sewer sediment, Water Science and Techonology, 69(3), 672-679. https://doi.org/10.2166/wst.2013.761

Shammas, N., Wang, L. K. (2011). Water and wastewater engineering: water supply and wastewater removal, 3rd Ed. USA: John Wiley and Sons Inc.

Sturm, T. W. (2001). Open Channel Hydraulics. Boston, EUA: McGraw Hill, Ed. https://doi.org/10.1115/1.1421122

Trapote-Jaume, A. (2013). Infraestructuras Hidráulico-Sanitarias II. Saneamiento y drenaje urbano. 2ª Ed. Universidad de Alicante.

Vongvisessomjai, N., Tingsanchali, T., Babel M. (2010). Non-deposition design criteria for sewers with part-full flow, Urban Water Journal, 7(1), 61-77. https://doi.org/10.1080/15730620903242824

Yao, K. M. (1974). Sewer line design based on critical shear stress. Journal of the Environmental Engineering Division, 100(2), 507-520.

Yao, K. M. (1976). Functional Design of Sanitary Sewers. Water Pollution Control Federation, 48(7), 1772-1778. Recuperado de http://www.jstor.org/stable/25039066?seq=1#references_tab_contents.

Descargas

Publicado

2020-01-31

Cómo citar

Castro Carrera, F., & La Motta, E. (2020). Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro. Ingeniería Del Agua, 24(1), 49–63. https://doi.org/10.4995/ia.2020.12260

Número

Sección

Artículos