EFECTOS DE ESCALA SOBRE LA SIMULACIÓN DEL FLUJO DE AGUA SUPERFICIAL EN CUENCAS URBANAS USANDO MODELOS BASADOS EN LA ONDA CINEMÁTICA

Raúl A. Pedraza¹, Manuel Gómez Valentín², Santiago Reyna³

Resumen:
Se propone un procedimiento de agregación espacial de esquemas de modelación y parámetros para la simulación del flujo de agua superficial en cuencas urbanas usando modelos basados en la onda cinemática. El procedimiento permite pasar de una segmentación de cuenca detallada (escala de detalle, ED) a otra más simple (escala agregada, EA), conservando una similitud hidrológica entre escalas. Se basa en reemplazar cada subcuenca completa (ED) por un único plano equivalente (EA), manteniendo constante el almacenamiento de equilibrio a través de la variación de la rugosidad efectiva del plano (N') y verificando el equilibrio cinemático completo. En cuencas que carecen de datos para una modelación a ED, se propone determinar N' por medio de una novedosa relación de similitud hidrológica (RSH). Una RSH expresa N' como función de la escala, a través de parámetros adimensionales. Se obtiene en base a datos de una cuenca comparable, aplicando sistemáticamente el procedimiento a distintas EA. A partir de una RSH se puede calcular el valor de N' para diferentes EA, en base a longitudes de flujo medidas de un mapa de la cuenca y a valores de rugosidad de flujo superficial reportados en la literatura.

Se verificó el procedimiento propuesto sobre una cuenca teórica y dos cuencas urbanas experimentales, Sant Boi de Llobregat (España) y Guadalupe Oeste (Argentina), por medio de experimentos numéricos. Los resultados obtenidos muestran una disminución de N' con el aumento de la escala, lo que denota un predominio del efecto de la agregación geométrica (EAG) sobre el efecto de la agregación de procesos (EAP) en cuencas pequeñas. Se muestra que la expresión analítica de una RSH depende de la importancia relativa de EAP respecto de EAG. Se demuestra además que una RSH permite estimar N' con suficiente precisión, por lo que esta función se muestra como una herramienta promisoria para la agregación de N' en cuencas pequeñas que carecen de datos para una modelación a ED.

Palabras clave: Agregación espacial, similitud hidrológica, cuencas urbanas, onda cinemática.

INTRODUCCIÓN: LOS PROBLEMAS DE ESCALA EN HIDROLOGÍA

Los modelos hidrológicos aplican ecuaciones básicas que gobiernan el flujo de agua, como las de conservación de masa y de momento y una ecuación de resistencia.

Estas ecuaciones fueron desarrolladas para una escala pequeña y un sistema espacio-tiempo continuo, bajo ciertas hipótesis simplificativas. Sin embargo, en las aplicaciones prácticas, los modelos se utilizan generalmente a escalas mayores.

En general, el término “escala” se refiere a una longitud o a un tiempo característico de un proceso, de una observación o de un modelo (Blöschl y Sivapalan, 1995).

Para aplicar un modelo hidrológico a una cuenca, ésta se descompone en unidades elementales, denominadas subcuencas (modelos concentrados), segmentos o celdas (modelos distribuidos).

¹ Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, Casilla de Correo 217. Santa Fe, Argentina. Email: rpedraza@fich.unl.edu.ar
² Escuela de Ingeniería de Caminos, Canales y Puertos, Universidad Politécnica de Cataluña. Jordi Girona 1-3 D1, Barcelona, España. Email: manuel.gomez@upc.es
³ Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Ciudad Universitaria, Casilla de Correo 916. Córdoba, Argentina. Email: santiagoreyna@ciudad.com.ar

Artículo recibido el 2 de junio de 2004, recibido en forma revisada el 18 de febrero de 2005 y aceptado para publicación el 7 de septiembre de 2005. Pueden ser remitidas discusiones sobre el artículo hasta seis meses después de la publicación del mismo siguiendo lo indicado en las “Instrucciones para autores”. En el caso de ser aceptadas, éstas serán publicadas conjuntamente con la respuesta de los autores.
Estas unidades representan sectores de la cuenca hidrológicamente homogéneos, que se caracterizan por medio de parámetros medios areales. La escala espacial que adopta el modelista determina el grado de concentración de los parámetros por unidad elemental; a mayor escala, mayor concentración de parámetros.

Los problemas de escala en hidrología surgen debido a que la importancia relativa de los procesos cambia con la escala. Un ejemplo típico es el cambio de la importancia relativa de los flujos superficial y en canal con el tamaño de la cuenca. Por lo tanto, las descripciones de procesos o parámetros que han sido obtenidos para pequeñas escalas de laboratorio o parcelas experimentales no necesariamente siguen siendo válidos para escalas mayores (Blöshl y Sivapalan, 1995).

Numerosos trabajos reportados en la literatura ponen de manifiesto la existencia de efectos de escala sobre los resultados de la simulación hidrológica y plantean la necesidad de adecuar los parámetros del modelo para lograr una similitud entre los hidrogramas simulados con diferentes escalas. Sin embargo, en la búsqueda de métodos para la adecuación de los parámetros, aún no se han determinado relaciones de similitud que expresen la variación de parámetros efectivos como función de la escala. Dooge (1986) puntualizó que “a diferencia de la teoría hidráulica, la cual cuenta con los números de Froude y Reynolds, en hidrología no se dispone de ningún principio de similitud para la respuesta de la cuenca. Una relación de similitud permitiría que los resultados del modelo sean aplicados a diferentes escalas, manteniendo ciertas relaciones sobre un rango amplio de escalas”.

Este trabajo pone el foco en este punto y propone un procedimiento de agregación que incluye una novedosa relación de similitud hidrológica.

EL PROCESO DE ESCALAMIENTO

Para obtener respuestas similares del modelo con distintas escalas es necesario transferir información a través de las escalas, lo cual se denomina “escalamiento”. El proceso de escalamiento en hidrología puede definirse como sigue (Blöshl y Sivapalan, 1995).

Sea g(s; q; i) una conceptualización de escala pequeña como una función de variables de estado s, parámetros q y entradas i, y sea G(S; Q; I) la correspondiente descripción para una escala grande. La información a escalar se compone tanto de variables de estado S, parámetros Q, entradas I, como de la misma conceptualización G(S; Q; I):

\[s \leftrightarrow S, \ q \leftrightarrow Q, \ i \leftrightarrow I, \ g(s; q; i) \leftrightarrow G(S; Q; I) \]

En la práctica, a menudo sólo se escalan algunos tipos de información y los restantes se asumen sin cambios entre escalas.

En un contexto hidrológico, agregar significa transferir información desde una escala dada a otra mayor. Inversamente, desagregar significa transferir información a una escala menor (Gupta et al., 1986). Uno de los factores que hace que el escalamiento sea muy difícil, es la heterogeneidad de las cuencas y la variabilidad de los procesos hidrológicos.

Con el escalamiento puede cambiar tanto el valor como el mismo significado físico de algunos parámetros (Blöshl y Sivapalan, 1995).

Idealmente, las ecuaciones deberían ser obtenidas directamente para la escala adoptada. Sin embargo, mientras no existan expresiones adecuadas para una escala grande, se debe recurrir a la aplicación de ecuaciones de escala pequeña con parámetros efectivos. Se denominan de este modo a los parámetros que permiten simular procesos hidrológicos con ecuaciones de escala pequeña pero aplicando una escala grande, de tal modo que las salidas del modelo con ambas escalas mantengan una similitud.

Estos parámetros son de clara importancia práctica, ya que permiten simplificar la complejidad geométrica del esquema de segmentación de una cuenca (o esquema de modelación) y en consecuencia, reducir el requerimiento de datos y el esfuerzo computacional. Sin embargo, su uso tiene limitaciones, particularmente cuando los procesos dominantes cambian con la escala (Beven, 1991). Además, en el escalamiento se debe contemplar la heterogeneidad de los parámetros físicos y de la lluvia.

Cuando se aplica un modelo a una escala grande surge la necesidad de estimar los parámetros efectivos, los cuales son desconocidos. Para calibrar estos parámetros existen dos posibles caminos:
a) En base a registros de eventos precipitación-escorrentía. En muchas cuencas no se dispone de esta información, por lo que no es posible utilizar esta vía.

b) Aplicando procedimientos de agregación. Estos procedimientos permiten calcular los parámetros efectivos a partir de valores publicados en la literatura para características patrones, en general representativos de una escala pequeña. Se basan en aplicar el modelo a ambas escalas (pequeña y gran) y en ajustar los parámetros efectivos de esta última de manera de conservar entre las escalas alguna propiedad representativa de la respuesta hidrológica (ej. el tiempo de equilibrio). En general, estos métodos son de importancia más conceptual que práctica, ya que raramente se dispone de suficiente información para aplicar la modelación a una escala pequeña.

Dadas las dificultades expresadas, a menudo los parámetros efectivos se estiman directamente a partir de valores reportados en la literatura, aún cuando éstos fueron determinados experimentalmente para escamas pequeñas. Algunos autores alertan sobre este problema (Engman, 1986; Huber y Dickinson, 1992; Blöshl y Sivapalan, 1995). Aún advertido de ello, el modelista enfrenta una gran incertidumbre: ¿qué valor adoptar para los parámetros efectivos? Este trabajo aporta una respuesta a este interrogante, en lo referente a los parámetros efectivos del flujo superficial en áreas urbanas, cuando se aplican modelos basados en la onda cinematográfica.

EL TIEMPO DE EQUILIBRIO DEL FLUJO DE AGUA SUPERFICIAL

El flujo de agua superficial se compone de dos tipos básicos: superficial y en canal. Está gobernado por las ecuaciones de conservación de masa, de cantidad de movimiento, de energía y una ecuación de resistencia.

La teoría de la onda cinematográfica (Lighthill y Whitham, 1955; Henderson y Wooding, 1964; Wooding, 1965; Woolhiser y Liggett, 1967; Eagleson, 1970; Schaahe, 1971; Morris y Woolhiser, 1980) es una buena aproximación para describir el flujo de agua superficial en muchas situaciones reales. En la ecuación dinámica, considera como hipótesis simplificativa que los términos de aceleración y de presión son despreciables con respecto a los de gravedad y fricción. Además, aplica una simplificación geométrica: las complejidades del flujo de agua superficial sobre una cuenca se representan por medio de una red de segmentos simples interconectados, tales como planos de escurrimiento y segmentos de canal. Los primeros, permiten simular la propagación del flujo superficial y los segundos, el tránsito del flujo en canal. Una cuenca simple puede ser modelada como uno o más planos de escurrimiento que aportan lateralmente a un segmento de canal (Figura N°1).

Figura 1. Esquema de modelación de una cuenca elemental.

Donde i es la intensidad de lluvia en exceso; L, la longitud de cada plano; l, la longitud del canal receptor; q, el caudal lateral específico (para un ancho unitario del plano) y Q, el caudal a la salida de la cuenca.

El **tiempo de equilibrio** es el tiempo requerido por una onda infinitesimal para trasladarse desde la cabecera de un segmento (plano o canal) hasta la sección de salida, para un caudal lateral constante. Es un parámetro representativo de la respuesta hidrológica de una cuenca.

Para un plano sobre el que cae una lluvia en exceso de intensidad constante i, con una duración suficientemente larga, el tiempo de equilibrio cinemático del plano, \(t_i \), se expresa (Woolhiser y Liggett, 1967; Eagleson, 1970):

\[
 t_i = \left(\frac{L}{\alpha \cdot \frac{1}{i^{n-1}}} \right)^{\frac{1}{n-1}}
\]

(1)

Donde \(\alpha \) y m son coeficientes cinemáticos que dependen de la forma, pendiente y rugosidad del plano y del régimen del flujo.

Para flujo turbulento, es aplicable la ecuación de Manning y los parámetros cinemáticos pueden expresarse:

\[
 \alpha = \frac{1}{N} \cdot s \cdot F
\]

(2)
\[m = \frac{5}{3} \]

(3)
donde N es el coeficiente de rugosidad del flujo superficial y S es la pendiente de fondo. Reemplazando estas en (1):

\[t_p = \left[\frac{N \cdot L}{S^{k} \cdot i^{k}} \right]^{\frac{1}{k}} \]

(4)

El tiempo de equilibrio del canal, \(t_c \), se expresa (Schaake, 1971):

\[t_c = \left(\frac{I_c}{\alpha_c \cdot (2 \cdot i \cdot L)^{m-1}} \right)^{\frac{1}{m}} \]

(5)
donde \(\alpha_c \) y \(m_c \) son parámetros cinemáticos del canal, función de la geometría de la sección transversal y de la rugosidad del canal.

Condiciones de equilibrio cinemático sobre un plano

Las posibles condiciones de equilibrio cinemático sobre un plano de escorrentía de pendiente uniforme S, ancho unitario y longitud L, inicialmente seco, sobre el que cae una lluvia en exceso de intensidad constante i y duración \(t_r \), son dos: completo o parcial, de acuerdo a cómo sea la relación entre \(t_r \) y \(t_p \) (Woolhiser et al., 1975) (Figura N° 2).

\[y_A = i \cdot t_p \]

(6)

\[q_A = i \cdot L \]

(7)

Si \(t_r \) excede a \(t_p \) (ej. \(t_{r2} \)), el hidrograma resultante (A) alcanza un equilibrio completo. Para un tiempo igual a \(t_p \), a la salida del plano se alcanzan el tirante y el caudal máximos:

\[y_B = i \cdot t_r \]

(8)

\[q_B = \alpha \cdot (i \cdot t_r)^m \]

(9)

El caudal máximo se mantiene constante hasta un tiempo \(t_d \):

\[t_d = t_r + \frac{t_p - t_{r1}}{m} \]

(10)
donde:

\[t_p = \frac{L}{\alpha \cdot y_B^{m-1}} \]

(11)

El coeficiente de rugosidad del flujo superficial

Dado el pequeño tirante del flujo superficial, el coeficiente de rugosidad contempla no sólo la fricción del flujo contra la superficie, sino también otros efectos adicionales, como el impacto de las gotas de lluvia, obstáculos, procesos de erosión y transporte de sedimentos. Se lo simboliza N, para diferenciarlo del coeficiente n de Manning aplicable a canales abiertos (Engman, 1986). Existen experiencias que indican que N toma valores considerablemente mayores que el coeficiente n de Manning para flujo en canales, para igual tipo de cobertura (Harley, 1975; Kibler y Reed, 1991; U. S. Environmental Protection Agency, 2000).

Engman (1986) sostuvo que “estos valores son apropiados para el uso de modelos distribuidos basados física, que simulan el flujo superficial sobre planos de escorrimento hacia segmentos de canal”. Además, advirtió a los usuarios de estos valores sobre algunas limitaciones potenciales: “las canalizaciones, la longitud del flujo y la intensidad de lluvia pueden ser factores limitantes si esos valores de rugosidad son aplicados para condiciones significativamente diferentes a las de los experimentos de campo. Sobre planos de escorrimento largos, los modelos pueden calcular tirantes demasiado grandes, no realsis”. Esto significa que el coeficiente de rugosidad del flujo superficial es un parámetro escala-dependiente.

En este trabajo, el término “escala” se refiere específicamente a la longitud promedio de los planos de un esquema de modelación, pudiendo variar desde pocas decenas de metros hasta cientos de metros.

Si en un esquema de modelación se representa la totalidad de las cunetas y canales existentes en la cuenca, en general la escala es de pocas decenas de metros (Emmett, 1978). A los efectos de este trabajo, se denomina escala de detalle (ED) a toda escala suficientemente pequeña, menor o igual a 25 m, tal que los coeficientes de rugosidad del flujo superficial sugeridos en la literatura (N) pueden aplicarse directamente, sin necesidad de escalamiento. Si una escala no cumple esta última condición, se denomina escala agregada (EA).

EFECTOS DE ESCALA EN LA SIMULACIÓN DEL FLUJO DE AGUA SUPERFICIAL

La agregación de un esquema de modelación de ED implica que una subcuenca compleja, compuesta por planos, cunetas y eventualmente, canales y conductos, sea reemplazada por un único plano equivalente (EA).

La agregación tiene dos componentes:

a) **agregación geométrica**: consiste en la modificación de la longitud típica de los planos de escorrimento. Con la agregación, la longitud del plano equivalente, L_{EA}, puede ser mayor o igual que la longitud media ponderada por superficie de los planos de ED, L_{ED}, de acuerdo al criterio que adopte el modelista. Conservando la rugosidad y pendiente de los planos entre ambas escalas, si se adopta L_{EA} > L_{ED}, aumenta t_p (4) y el efecto de la agregación geométrica (EAG) atrasa el caudal máximo simulado. En cambio, si se adopta L_{EA} = L_{ED}, t_p no varía y EAG es nulo.

b) **agregación de procesos**: consiste en la remoción de cunetas, canales y conductos de menor jerarquía con el aumento de escala. Todo componente de la red de drenaje incorpora almacenamiento y en consecuencia, atiende en algún grado el hidrograma de salida. Con la remoción de estos segmentos se produce una pérdida de almacenamiento, por lo que el efecto de la agregación de procesos (EAP) anticipa el caudal máximo simulado.

Los efectos individuales EAG y EAP actúan simultáneamente sobre el hidrograma simulado con EA. El efecto de agregación neto (EAN) es igual a la suma de los efectos individuales:

$$EAN = EAG + EAP$$ \((12)\)

Si predomina alguno de los efectos individuales, EAN no es nulo y se modifica la respuesta hidrológica.

SIMILITUD HIDROLÓGICA

En este trabajo, se denomina de este modo a la semejanza entre hidrogramas simulados con esquemas de modelación de distintas escalas.

Para mantener una similitud hidrológica entre escalas, es necesario conservar el tiempo de equilibrio: lo que equivale a anular EAN. Para ello, se debe recurrir al escalamiento de los parámetros.

Como se ha visto en (4), son tres los parámetros del flujo superficial que influyen sobre t_p: N, L y S. Además, se tiene que N y L están elevados a un exponente 3/5 mientras que S lo está a 3/10, por lo que t_p es más sensible a las variaciones de los dos primeros. Por este motivo, los parámetros del flujo superficial que usualmente se escalam son N y L, mientras que S se conserva entre escalas.

Existen dos posibles procedimientos para escalar N y L:

a) Adoptar la longitud del plano equivalente (L_{EA}) como parámetro de calibración. Consiste en adoptar para este plano la rugosidad media areal de los planos de ED y aumentar
L_{EA} respecto a \(L_{EA} \) hasta que EAG compense a EAP, con lo que se anula EAN. Por medio del aumento de la longitud se aumenta el almacenamiento, en un valor igual al perdido por remoción de los canales y conductos de menor jerarquía.

Zaghoul (1983) y Huber y Dickinson (1992) aplicaron este procedimiento para escalar el modelo SWMM. Calcularon los parámetros físicos de los planos agregados (excepto la longitud) como promedios ponderados por superficie. Para compensar la pérdida de almacenamiento, aumentaron la longitud de los planos agregados por medio de la reducción del parámetro ancho de cuenca, igual a la suma de los anchos de las subcuenas.

b) Adoptar la rugosidad efectiva del plano equivalente (N°) como parámetro de calibración. Este parámetro deja de tener el significado físico de la rugosidad de ED y pasa a tener un significado computacional (Goodrich, 1990). Consiste en calcular L_{EA} en base a un mapa de la cuenca y en calibrar N° de manera de anular EAN.

Goodrich (1990) aplicó este procedimiento para escalar el modelo KINEROS en cuatro cuencas rurales de Arizona. Calculó los parámetros físicos del plano equivalente (incluida la longitud) como promedios ponderados por superficie de los parámetros de ED y calibró N° para conservar el tiempo de respuesta característico de la subcuenca a agregar.

Si bien ambos procedimientos son válidos, en este trabajo se adopta el segundo por considerarlo con mayor sustento geométrico y físico. El procedimiento adoptado permite representar la verdadera longitud del flujo en la subcuenca a agregar. Además, es coherente escalar no sólo la longitud sino también la rugosidad, dado que éste es un parámetro escala-dependiente. Se describen a continuación los conceptos de base en los que se sustenta el procedimiento de agregación propuesto.

Almacenamiento de equilibrio

El almacenamiento de equilibrio, \(S_{eq} \), es el volumen de agua en tránsito hacia la salida de una cuenca, sobre una superficie impermeable, bajo una lluvia espacial y temporalmente uniforme, cuando se ha alcanzado el equilibrio cinemático completo (Overton, 1971; Wu et al., 1978). En el caso de cuencas urbanas con drenaje dual, el volumen comprende no sólo el agua que escurre superficialmente, sino también la que fluye a través de conductos subterráneos.

Conservando \(S_{eq} \) entre escalas, se conserva el tiempo de equilibrio y por lo tanto una similitud hidrológica (Wu et al., 1978).

Integrando la expresión del tirante del flujo para la longitud del plano, se obtiene (Overton, 1971):

\[
S_{eq} = \int \left(\frac{i}{\alpha} \right)^p dx = \frac{m}{m+1} \left(\frac{i}{\alpha} \right)^p L^{m+1} \mu
\]

donde \(S_{eq} \) es el almacenamiento de equilibrio por unidad de ancho del plano.

El \(S_{eq} \) se puede expresar como el tirante medio del flujo, dividiendo (13) por \(L \). Como \(\alpha \) depende de \(S \) y \(N \), \(S_{eq} \) contempla en su cálculo tanto las características del plano (\(L, S \) y \(N \)) como de la lluvia (\(i \)).

El \(S_{eq} \) de una subcuenca a agregar (ED) se calcula como la suma del volumen aportado por cada uno de los segmentos que la componen (planos, cunetas, canales y conductos). Para ello, cada segmento se divide en subtramos por medio de \(n \) secciones transversales y se calcula el área mojada en cada sección, \(A_m \), con la ecuación:

\[
A_m = \alpha' Q^m
\]

\[
\alpha' = \left(\frac{1}{\alpha} \right)^{p_m}
\]

\[
m' = \frac{1}{m}
\]

donde \(\alpha \) y \(m \) se calculan según el tipo de segmento y \(Q \) es el caudal para la condición de equilibrio cinemático completo.

El almacenamiento de agua en cada segmento \(k \), \(S_k \), se calcula:

\[
S_k = \sum_{i=1}^{n} (A_i + A_{i+1}) \frac{A_i}{2}
\]

donde \(i \) es una sección transversal genérica; \(n \), la cantidad de secciones del segmento \(k \) y \(A \), el incremento de longitud entre dos secciones consecutivas.
El almacenamiento total S_{eq} de la subcuenca a agregar se calcula como:

$$S_{eq} = \sum_{k=1}^{j} S_{k}$$ \hspace{1cm} (18)

donde k es un segmento genérico y j, la cantidad de segmentos que componen la subcuenca a agregar.

Las ecuaciones (14) a (18) fueron incorporadas al modelo aplicado en este trabajo, para calcular los almacenamientos en cada tipo de segmento y en cada intervalo de tiempo.

Rugosidad efectiva del plano equivalente

Para calcular la rugosidad efectiva del plano equivalente (EA), Goodrich (1990) propuso la expresión:

$$N'e = \frac{\sqrt{S}}{\lambda} \left(\frac{m+1}{m} \right)^{n/2} \left(\frac{S_{eq}}{W} \right)^{n/2} \left(\frac{1}{L} \right)^{n+1}$$ \hspace{1cm} (19)

donde $N'e$ es la rugosidad efectiva o computacional del plano equivalente; W, L y S son el ancho, la longitud y la pendiente del plano y S_{eq} es el almacenamiento de equilibrio, calculado para la subcuenca a agregar (ED). Esta ecuación es válida para flujo turbulento y se obtiene sustituyendo α por (2) en (13). La rugosidad efectiva se simboliza con $N'e$ para diferenciárlo del coeficiente de rugosidad del flujo superficial, N, ya que deja de tener el mismo significado físico que éste. Mientras N es un parámetro hidráulico de ED, $N'e$ es un parámetro computacional del plano equivalente (EA) que permite conservar S_{eq} para mantener una similitud hidrológica entre EA y ED.

Duración de lluvia adimensional

En el proceso de agregación se debe considerar el efecto de la variabilidad espacial de los parámetros físicos de la cuenca y de la lluvia. La *duración de lluvia adimensional*, t^* (Julien y Moglen, 1990) se define como la relación entre la duración de la lluvia en exceso, t_e, y el tiempo de equilibrio del plano:

$$t^* = \frac{t_e}{t_p}$$ \hspace{1cm} (20)

Dichos autores investigaron el efecto de la variación espacial de 4 parámetros sobre el flujo superficial: pendiente, ancho y rugosidad del plano e intensidad de la lluvia en exceso. Para ello, aplicaron un modelo de elementos finitos unidimensional, basado en la onda cinemática, sobre un plano de escorrimento.

A partir de los hidrogramas simulados, obtenidos bajo parámetros de entrada espacialmente variados, concluyeron que el hidrograma resultante depende principalmente de t^*. Encontraron que si t^* excede a t_p ($t^* > t_p$), caso de equilibrio completo, la variabilidad espacial de los parámetros físicos y de la lluvia ejerce poca influencia sobre los caudales simulados. A medida que $t^* \rightarrow \infty$ ($t^* >> t_p$), la relación entre la entrada (i) y la salida (q) se vuelve aproximadamente lineal (7). Inversamente, para $t^* < 1$, caso de equilibrio parcial, la relación se vuelve no lineal (9) y altamente sensible a la variabilidad espacial de los parámetros físicos del plano y de la lluvia.

PROCEDIMIENTO DE AGREGACIÓN

Consiste en reemplazar cada subcuenca compleja (ED) por un plano equivalente (EA), conservando una similitud hidrológica entre ambos. Para ello, se aplican los siguientes pasos:

1) Se calculan la longitud y la pendiente del plano equivalente. La longitud se calcula a partir de un mapa de la cuenca con la expresión:

$$L = \frac{A}{L_e}$$ \hspace{1cm} (21)

donde L es la longitud del plano equivalente; A, el área de la subcuenca a agregar y L_e, la longitud del canal al cual aporta el plano (EA).

2) La pendiente del plano equivalente se calcula como el promedio ponderando por superficie de las pendientes de los planos de ED.

3) Se calcula el S_{eq} de la subcuenca a agregar (ED), considerando la hipótesis de suelo impermeable, bajo una lluvia en exceso de intensidad constante, igual a la intensidad media de la tormenta en estudio, y de duración suficientemente larga para alcanzar el equilibrio cinemático completo. El S_{eq} se calcula como la suma de los volúmenes de agua en tránsito sobre todos los segmentos comprendidos en la subcuenca, para la condición de equilibrio cinemático completo, aplicando las ecuaciones (14) a (18).

4) Se calcula el valor $N'e$ del plano equivalente (EA) por aproximación. Se proponen distintos valores del parámetro y se calculan los correspondientes almacenamientos sobre el plano con las ecuaciones (14) a (17), hasta encontrar el valor de $N'e$ que mantiene constante el S_{eq} calculado para ED en el paso anterior.
iv) Se evalúan la condición de equilibrio cinemático sobre el plano equivalente con (20). En esta ecuación, se ingresa θ_p calculado con (4), considerando N^*. Es deseable que se cumpla la condición $\theta_p \geq 1$, ya que en este caso el plano alcanza un equilibrio cinemático completo con el evento en estudio y el hidrograma simulado es aproximadamente independiente de la variabilidad espacial de los parámetros físicos y de la lluvia.

Si no se cumple dicha condición, se debe reducir el tamaño de la subcuenca a agregar y volver al paso i). No obstante, a partir de los resultados obtenidos en las aplicaciones del procedimiento sobre las cuencas experimentales, se ha encontrado que el error que introduce el equilibrio parcial en los caudales simulados con EA es mitigado por las pérdidas de escurrimiento. Resultados similares fueron encontrados por Goodrich (1990) en cuencas rurales.

Aplicando los pasos i) a iv) sistemáticamente a todas las subcuenchas que componen la cuenca total se completa la agregación; es decir, se pasa de ED a una EA manteniendo una similitud hidrológica.

En el caso de cuencas con cobertura homogénea, se puede simplificar el procedimiento. En estas cuencas, se puede calibrar N^* como un único valor para todos los planos de EA y luego verificar la condición $\theta_p \geq 1$ para el plano promedio de EA, con (20). En ésta, se ingresa θ_p calculado con (4) en función de N^*, la longitud y pendiente medias de los planos de EA y la intensidad media de lluvia en exceso del evento.

En cuencas que carecen de datos para una modelación a ED, se propone determinar N^* a partir de una novedosa relación de similitud hidrológica (RSH).

Relación de similitud hidrológica

Un análisis de similitud se desarrolla en dos pasos (Blöchl y Sivapalan, 1995): i) se organizan variables significativas del proceso en grupos adimensionales, ii) se determinan relaciones entre los grupos. Este último paso puede ser llevado a cabo por medio de experimentos de campo o laboratorio y/o simulaciones numéricas.

Siguiendo esta metodología, se definieron dos parámetros adimensionales de escalado:

1. **razón de longitudes** (E_L): es el cociente entre la longitud del plano equivalente (EA), L_{EA}, y la longitud media areal de los planos de la subcuenca a reemplazar (ED), L_{ED}.

 \[
 E_L = \frac{L_{EA}}{L_{ED}}
 \]

 (22)

 E_L es la escala de trabajo adimensional, expresada en términos de L_{ED}. A medida que aumenta la escala, E_L aumenta ($E_L \geq 1$). Para ED, corresponde $E_L = 1$ y para una EA dada, $E_L > 1$.

2. **razón de rugosidades** (E_R): es el cociente entre la rugosidad efectiva del plano equivalente (EA), N^*, y la rugosidad media areal de los planos de la subcuenca (ED), N.

 \[
 E_R = \frac{N^*}{N}
 \]

 (23)

 E_R es la rugosidad efectiva adimensional del plano equivalente, expresada en términos de N, necesaria para que exista similitud hidrológica entre EA y ED ($E_R \leq 1$).

En cuencas con cobertura homogénea, donde es posible considerar un único valor de N para todos los planos de ED, para una EA dada los parámetros se expresan:

\[
E_L = \frac{L_{EA}}{L_{ED}}
\]

(24)

\[
E_R = \frac{N^*}{N}
\]

(25)

donde L_{EA} es la longitud media de los planos de EA; N^*, la rugosidad efectiva de los planos de EA y N, la rugosidad de los planos de ED.

Una RSH se obtiene por medio de simulaciones numéricas, en base a datos de una cuenca comparable. En este trabajo se demuestra que aplicando sistemáticamente los pasos i) a iv) del procedimiento para varias EA de una cuenca homogénea, es posible determinar un par de valores (E_L, E_R) para cada EA y finalmente una RSH en la forma E_R = f (E_L).

Una RSH expresó la variación de la rugosidad efectiva como función de la escala, mantiene el S_{eq} y por lo tanto, una similitud hidrológica dentro de un rango de escalas dado.

La expresión analítica de una RSH depende de la importancia relativa de EAP respecto de EAG, tal como se muestra más adelante en las aplicaciones sobre la cuenca teórica y las cuencas experimentales. La Figura N° 3 muestra una RSH.
El procedimiento propuesto calcula L_{EA} en función del área de la subcuenca a agregar. Por lo tanto, se tiene que $L_{EA} > L_{EP}$, aumenta t_e (4) y EAG atrasa el caudal máximo simulado. El procedimiento se aplica sobre cuencas urbanas pequeñas, por lo que EAG predomina sobre EAP, tal como lo muestran los resultados obtenidos. En consecuencia, EAN atrasa el caudal máximo simulado y para anular este efecto se debe disminuir N^e respecto de N. Por lo tanto, a medida que aumenta E_L, E_R disminuye.

En una RSH, para $E_L = 1$ corresponde $E_R = 1$ (condición de ED). Para una EA dada ($F_L > 1$), el decaimiento de E_R respecto a la unidad representa la variación necesaria del parámetro para anular EAN. En el ejemplo de la figura, para que un plano equivalente con $E_L = 5$ mantenga una similitud hidrológica con la subcuenca a agregar (ED), la rugosidad efectiva de dicho plano debe ser igual al 60% de la rugosidad media de ED.

La disminución de N^e con el aumento de escala es coherente con la hidráulica de los procesos simulados, ya que con la agregación aumenta la importancia relativa del flujo en cauces, de menor rugosidad que el flujo superficial, en el flujo promedio. Sin embargo, no debe esperarse una semejanza numérica entre N^e y las rugosidades características del flujo en cauces, debido a que N^e no es un parámetro hidráulico sino computacional, que relaciona propiedades geométricas y de procesos entre ED y EA para obtener una similitud hidrológica.

La aplicación del procedimiento de agregación, incluyendo la RSH, debe limitarse a cuencas pequeñas. Esto es debido a que en estas cuencas, predomina el efecto del flujo superficial sobre el efecto del flujo en cauces en el hidrograma de salida (Chow, 1964).

Para cuencas mayores, cambia el proceso dominante: el efecto del flujo en cauces predomina sobre el efecto del flujo superficial y la respuesta hidrológica pasa a depender principalmente de parámetros geométricos e hidráulicos de la red de drenaje. Por lo tanto, para estas cuencas, las relaciones de similitud deben vincular tales parámetros y no parámetros del flujo superficial.

Como sus parámetros están expresados en forma adimensional, una RSH puede ser transferida a cuencas comparables para estimar directamente N^e para distintas escalas. Para ello, se calcula E_L con (22) en base a longitudes medidas en un mapa de la cuenca, se obtiene E_R ingresando con E_L en la RSH y finalmente se calcula N^e con (23), como producto entre E_R y N, obtenido a partir de valores de rugosidad de flujo superficial reportados en la literatura. La aplicación de una RSH reemplaza los pasos ii) y iii) del procedimiento y, por lo tanto, evita realizar la modelación a ED.

APLICACIÓN DEL PROCEDIMIENTO SOBRE UNA CUENCA TEÓRICA CON DRENAJE EXCLUSIVAMENTE SUPERFICIAL

Escenarios considerados y resultados obtenidos

El procedimiento propuesto fue puesto a prueba sobre una cuenca urbana teórica con drenaje exclusivamente superficial, aplicando un modelo basado en la onda cinématica. Se utilizó el modelo OCRED-1 (Pedraza, 2002), que es una versión actualizada del modelo DURM (Deterministic Urban Runoff Model) (Schakke, 1971).

La cuenca se adoptó de forma simple, impermeable, de rugosidad uniforme, de modo que los efectos de escala puedan ser claramente demostrados, sin que sean emmascarados por eventuales heterogeneidades de parámetros físicos. Se consideró una superficie de 56 ha y un dreno regular compuesto de manzanas cuadradas de 100 m de lado.

Para la modelación de la cuenca se consideraron 4 escalas, una ED (A) y tres EA (B, C y D) (Figuras N° 4.a a N° 4.d). Cada subcuenca se esquematizó con uno o dos planos de escurrimiento que aportan hacia un segmento de cuneta.
La ED se adoptó de manera que la longitud media de los planos no supere la longitud máxima de los dispositivos utilizados para determinar experimentalmente los coeficientes de rugosidad de flujo superficial (aproximadamente 25 m).

En la Tabla N° 1 se muestran los parámetros de los esquemas.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_p)</td>
<td>224</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(L) [m]</td>
<td>25</td>
<td>117</td>
<td>350</td>
<td>700</td>
</tr>
<tr>
<td>(A) [ha]</td>
<td>0.25</td>
<td>2.8</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>(E_L)</td>
<td>1.0</td>
<td>4.7</td>
<td>14.0</td>
<td>28.0</td>
</tr>
<tr>
<td>(D_{cc}) [m/ha]</td>
<td>200.0</td>
<td>57.1</td>
<td>14.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

donde \(N_p\) es la cantidad de planos; \(L\), la longitud media de planos; \(A\), la superficie media de planos y \(D_{cc}\), la densidad de cunetas.

Para cada uno de los esquemas se consideraron escenarios, que resultaron de combinar distintas pendientes de planos y cunetas, rugosidades de planos de ED e intensidades y duraciones de lluvia, tal como se describe a continuación.

Se consideraron 3 pendientes (S): a) baja (0.1 %), b) media (1.0 %) y c) alta (10.0 %).

Para cada pendiente, se consideraron 4 rugosidades para ED (N): 0.015, 0.050, 0.100 y 0.350. Se consideró el mismo valor de rugosidad para todos los planos.

Para cada S y cada N, se consideraron 9 tormentas sintéticas, obtenidas de combinar 3 intensidades de lluvia (I) constantes: a) mínima (10 mm/h), b) media (40 mm/h) y c) máxima (110 mm/h), con 3 duraciones (tr): a) corta (0.5 h), b) media (1.0 h) y larga (3.0 h).
Tabla 2. Escenarios considerados para cada esquema de la cuenca teórica.

<table>
<thead>
<tr>
<th>Esc.</th>
<th>S [%]</th>
<th>N [mm/ h]</th>
<th>i [mm/ h]</th>
<th>tr [h]</th>
<th>Esc.</th>
<th>S [%]</th>
<th>N [mm/ h]</th>
<th>i [mm/ h]</th>
<th>tr [h]</th>
<th>Esc.</th>
<th>S [%]</th>
<th>N [mm/ h]</th>
<th>i [mm/ h]</th>
<th>tr [h]</th>
<th>Esc.</th>
<th>S [%]</th>
<th>N [mm/ h]</th>
<th>i [mm/ h]</th>
<th>tr [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>0.015</td>
<td>10</td>
<td>3.0</td>
<td>2.01</td>
<td>10</td>
<td>3.0</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>40</td>
<td>1.0</td>
<td>2.02</td>
<td>1.0</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>110</td>
<td>0.5</td>
<td>2.03</td>
<td>0.5</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>0.015</td>
<td>3.0</td>
<td>2.04</td>
<td>3.0</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>1.06</td>
<td>40</td>
<td>1.0</td>
<td>2.05</td>
<td>1.0</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>110</td>
<td>0.5</td>
<td>2.06</td>
<td>0.5</td>
<td>3.06</td>
<td></td>
</tr>
<tr>
<td>1.08</td>
<td>0.015</td>
<td>3.0</td>
<td>2.07</td>
<td>3.0</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>1.09</td>
<td>40</td>
<td>1.0</td>
<td>2.08</td>
<td>1.0</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>110</td>
<td>0.5</td>
<td>2.09</td>
<td>0.5</td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>0.050</td>
<td>3.0</td>
<td>2.10</td>
<td>3.0</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>40</td>
<td>1.0</td>
<td>2.11</td>
<td>1.0</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>110</td>
<td>0.5</td>
<td>2.12</td>
<td>0.5</td>
<td>3.12</td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>0.050</td>
<td>3.0</td>
<td>2.13</td>
<td>3.0</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>40</td>
<td>1.0</td>
<td>2.14</td>
<td>1.0</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>110</td>
<td>0.5</td>
<td>2.15</td>
<td>0.5</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>1.17</td>
<td>0.1</td>
<td>3.0</td>
<td>2.16</td>
<td>3.0</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>110</td>
<td>1.0</td>
<td>2.17</td>
<td>1.0</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>0.100</td>
<td>0.5</td>
<td>2.18</td>
<td>0.5</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>40</td>
<td>3.0</td>
<td>2.19</td>
<td>3.0</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>10</td>
<td>1.0</td>
<td>2.20</td>
<td>1.0</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>0.100</td>
<td>0.5</td>
<td>2.21</td>
<td>0.5</td>
<td>3.21</td>
<td></td>
</tr>
<tr>
<td>1.23</td>
<td>40</td>
<td>3.0</td>
<td>2.22</td>
<td>3.0</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>10</td>
<td>1.0</td>
<td>2.23</td>
<td>1.0</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>0.100</td>
<td>0.5</td>
<td>2.24</td>
<td>0.5</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>40</td>
<td>3.0</td>
<td>2.25</td>
<td>3.0</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>1.27</td>
<td>10</td>
<td>1.0</td>
<td>2.26</td>
<td>1.0</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>0.350</td>
<td>0.5</td>
<td>2.27</td>
<td>0.5</td>
<td>3.27</td>
<td></td>
</tr>
<tr>
<td>1.29</td>
<td>40</td>
<td>3.0</td>
<td>2.28</td>
<td>3.0</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>10</td>
<td>1.0</td>
<td>2.29</td>
<td>1.0</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>0.350</td>
<td>0.5</td>
<td>2.30</td>
<td>0.5</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>40</td>
<td>3.0</td>
<td>2.31</td>
<td>3.0</td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>10</td>
<td>1.0</td>
<td>2.32</td>
<td>1.0</td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>0.350</td>
<td>0.5</td>
<td>2.33</td>
<td>0.5</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>40</td>
<td>3.0</td>
<td>2.34</td>
<td>3.0</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>1.36</td>
<td>10</td>
<td>1.0</td>
<td>2.35</td>
<td>1.0</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>1.37</td>
<td>0.350</td>
<td>0.5</td>
<td>2.36</td>
<td>0.5</td>
<td>3.36</td>
<td></td>
</tr>
</tbody>
</table>

Los valores de pendiente analizados cubren el rango de las aplicaciones prácticas, los valores de rugosidad cubren el rango para las coberturas permeables e impermeables más frecuentes (U.S. Environmental Protection Agency, 2000) y los valores de intensidad y duración de lluvia cubren un rango suficientemente amplio.

Por combinación de las 3 pendientes, 4 rugosidades de ED y 9 tormentas sintéticas, se simularon 108 escenarios para cada esquema (Tabla N° 2).

Los escenarios considerados son de dos tipos:

a) Escenarios de calibración: se consideraron 36 escenarios de calibración, dados por todas las combinaciones de S, N e i y la duración tr = 3.0 h, mayor al t, de todos los planos para los distintos escenarios: 1.01, 1.04, 1.07, 1.10, 1.13, 1.16, 1.19, 1.22, 1.25, 1.28, 1.31, 1.34, 2.01, 2.04, 2.07, 2.10, 2.13, 2.16, 2.19, 2.22, 2.25, 2.28, 2.31, 2.34, 3.01, 3.04, 3.07, 3.10, 3.13, 3.16, 3.19, 3.22, 3.25, 3.28, 3.31 y 3.34.
Para cada uno de estos escenarios, se calculó S_{eq} para la ED (A) y luego se calibraron por aproximación los valores de N^* para las escalas agregadas B, C y D (N_B^*, N_C^* y N_D^*), de manera de mantener constante el S_{eq} obtenido para A.

b) *Escenarios de aplicación*: se consideraron 72 escenarios de aplicación, dados por todas las combinaciones de S, N e i y las duraciones de lluvia $tr = 0.5$ h y $tr = 1.0$ h. Para cada uno de estos escenarios se realizaron las simulaciones para las 4 escalas, aplicando las rugosidades N (adoptadas), N_B, N_C y N_D (previamente obtenidas en la calibración). El objeto de estas simulaciones fue evaluar la respuesta del modelo para distintos valores de t_e^*, incluyendo casos de equilibrio cinemático parcial. Tabla N° 2: Escenarios considerados para cada esquema de la cuenca teórica.

donde Esc. es el escenario considerado; S, la pendiente; N, la rugosidad de ED; i, la intensidad de lluvia en exceso y tr, la duración de la lluvia.

Para el flujo en cunetas se adoptó una pendiente transversal de las calzadas del 3% y un coeficiente de rugosidad de 0.015, representativo de una superficie de concreto-asfalto con terminación rugosa. Estas características se mantuvieron sin modificaciones en los distintos escenarios.

Se realizaron en promedio 16 simulaciones por escenario de calibración (una para la escala A y 5 de aproximación para cada una de las escalas agregadas) y 4 simulaciones por escenario de aplicación (una para cada escala), por lo que en total se realizaron más de 800 simulaciones.

Para ejemplificar los resultados obtenidos, en las Figuras N° 5.a a N°5.c se muestran los hidrogramas simulados para el escenario de calibración 1.10 y los escenarios de aplicación 1.11 y 1.12. Los caudales se expresan en forma adimensional respecto del caudal máximo para la condición de equilibrio completo en la cuenca, calculado con (7).

Se evaluó la condición de equilibrio cinemático del plano promedio de cada esquema, para cada uno de los 108 escenarios. Para ello, se calculó t_e^* con (4) considerando el valor de N ó N^* correspondiente y luego se obtuvo t_e^* con (20). En el sector superior derecho de las figuras se presentan los valores de t_e^* del plano promedio de cada esquema.

Los resultados obtenidos indican que si el plano promedio de una EA alcanza un equilibrio completo, el error relativo (por defecto) del caudal máximo simulado con dicha EA respecto al caudal máximo obtenido con ED, E_{CP}, es menor al 15% en todos los casos. En cambio, si el plano alcanza un equilibrio parcial, el error aumenta sensiblemente a medida que disminuye t_e^* (Figura N° 6).

Para ejemplificar los resultados obtenidos, en la Tabla N° 3 se muestran los correspondientes al Escenario 1.10.
Puede observarse que a medida que aumenta la agregación, aumenta el S_{eq} aportado por los planos y disminuye el contribuido por las cunetas, pero se mantiene el S_{eq} total.

Las rugosidades N adoptadas y N^*_B, N^*_C y N^*_D ajustadas conservando S_{eq} (escenarios de calibración) se muestran en la Tabla N° 4.

Relaciones de similitud para distintos escenarios

A partir de las longitudes y rugosidades obtenidas conservando S_{eq}, se calcularon los parámetros adimensionales de escalamiento E_L (24) y E_R (25) para cada escenario de calibración y cada EA. Para cada escenario, se ajustó la siguiente expresión exponencial a los pares de valores experimentales (E_L, E_R):

$$ E_R = E_{R_1} + \left(1 - E_{R_1}\right) e^{-K E_L} $$

$$ E_{R_1} = \frac{N^*_R}{N} $$

$$ E_L = E_1 - 1 $$

donde E_{R_1} es el valor final de E_R; N^*_R, el valor final de N^*, al cual tiende N^* asintóticamente cuando E_L tiende a infinito y K, un coeficiente empírico a ajustar.

Los coeficientes de determinación obtenidos variaron en el rango $0.998 \leq r^2 \leq 1$ para los distintos escenarios. Las Figuras N° 7.a a N° 7.e muestran los pares de valores experimentales (E_L, E_R) y las relaciones de similitud ajustadas.

<table>
<thead>
<tr>
<th>Tabla 3. Resultados obtenidos para el Escenario 1.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
</tr>
<tr>
<td>S_{eq} total</td>
</tr>
<tr>
<td>$E_{S_{eq}}$ (%)</td>
</tr>
<tr>
<td>γ</td>
</tr>
<tr>
<td>$N \delta N^*$</td>
</tr>
<tr>
<td>S_B [m²]</td>
</tr>
<tr>
<td>S_B (%)</td>
</tr>
<tr>
<td>S_{eq} [m²]</td>
</tr>
<tr>
<td>S_{eq} (%)</td>
</tr>
</tbody>
</table>

donde S_{eq} total es el almacenamiento total sobre la cuenca, $E_{S_{eq}}$ es el error relativo de S_{eq} de una EA (B, C o D) respecto al S_{eq} de ED (A), y el tirante medio sobre la cuenca; N, la rugosidad de ED; N^*, la rugosidad efectiva de EA; S_B, el almacenamiento en planos y S_{eq}, el almacenamiento en cunetas.

<table>
<thead>
<tr>
<th>Tabla 4. Valores de N adoptados y de $N^_B$, $N^_C$ y N^*D obtenidos conservando $S{eq}$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i [mm/h]</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>110</td>
</tr>
</tbody>
</table>
Los valores experimentales corresponden a las abscisas: $E_L = 1.0$ (esquema A), $E_L = 4.7$ (esquema B), $E_L = 14.0$ (esquema C) y $E_L = 28.0$ (esquema D).

![Figura 7a. Relaciones de similitud para escenarios con pendiente 0.1 %.

Cuanto menor es la rugosidad de ED y mayor la intensidad de lluvia, el efecto de escala es menor. Para $N = 0.015$ e $i = 110$ mm/h, E_{RL} varía entre 0.53 y 0.80. Inversamente, cuanto mayor es la rugosidad de ED y menor la intensidad de lluvia, el efecto de escala es mayor. Para $N = 0.350$ e $i = 10$ mm/h, E_{RL} varía entre 0.06 y 0.08.

A partir de los pares de valores (E_{RL}, E_L), para cada relación de similitud se determinó el valor del coeficiente K por mínimos cuadrados. Los valores obtenidos indican que K varía en un rango pequeño para los distintos escenarios considerados. El valor promedio de K es 0.410 y el desvío estándar es 0.034.

En base a los valores de N_i, N, i y S de los escenarios de calibración, se ajustó por regresión múltiple la siguiente expresión:

$$N_i = 0.05707 N + 0.00005 i - 0.03916 S + 0.00703$$

donde N es la rugosidad de ED; i, la intensidad de lluvia en exceso [mm/h] y S, la pendiente [m/m].

El coeficiente de correlación múltiple obtenido es 0.985. Considerando N como única variable independiente, se obtuvo un coeficiente de correlación múltiple de 0.931. La segunda variable independiente en importancia en la regresión es i y la tercera es S. Ingresando N, i y S como variables independientes, el coeficiente de correlación obtenido es 0.961. A partir de estos resultados se puede concluir que N_i, N y por lo tanto las RSH obtenidas, dependen fundamentalmente de N y en menor medida de la intensidad de lluvia y de la pendiente.

APLICACIÓN DEL PROCEDIMIENTO SOBRE CUENCAS EXPERIMENTALES CON DRENAJE DUAL

Se verificó el procedimiento propuesto sobre dos cuencas urbanas experimentales con drenaje dual, Sant Boi de Llobregat (Barcelona, España) y Guadalupe Oeste (Santa Fe, Argentina), usando el modelo OCRED-1 (Pedraza, 2002). Estas cuencas fueron seleccionadas por tener diferentes características de tamaño, pendiente, impermeabilidad y rugosidad de flujo superficial.
APLICACIÓN DEL PROCEDIMIENTO SOBRE LA CUENCA SANT BOI DE LLOBREGAT

Descripción general de la cuenca

La cuenca se ubica en el municipio del mismo nombre, dentro del área metropolitana de Barcelona, Cataluña, España.

Tiene una superficie de 0.173 km² (17.3 ha) y la morfología del terreno es de tipo pie de monte. Las pendientes superficiales son medias-altas en su cabecera, del 3% y algo menores en la zona de la desembocadura. Se desarrolla dentro del casco antiguo de la ciudad, con ausencia casi completa de espacios verdes. En consecuencia, la impermeabilidad es muy alta, superior al 90% (Figura Nº 8).

Figura 8. Foto aérea de la cuenca, sus límites y traza de conductos existentes.

Escalas y esquemas de modelación considerados

Para la modelación de la cuenca se consideraron tres escalas, una de detalle (A) y dos agregadas (B y C) (Figuras Nº 9.a a Nº 9.c). Cada subcuenca se esquematizó como uno o dos planos de escorrentía que aportan a un segmento de cuneta, que representa la calle colectora. A la salida de cada subcuenca, el escorrentío es ingresado a un segmento de conducto subterráneo por medio de un nodo de entrada, representativo de una o más bocas de tormenta.

En la escala A, los planos representan sectores de cuenca comprendidos entre el centro de la manzana y la cuneta, sobre los cuales se desarrolla flujo superficial.

En la escala B, se remueven las cunetas de menor jerarquía y los conductos de 1° orden. Los planos representan sectores de cuenca más amplios que los de la escala anterior, sobre los cuales se desarrollan dos tipos de flujo: superficial y concentrado poco profundo (en cuneta).

En la escala C, se eliminan más cunetas y los conductos de hasta 2° orden. Los planos representan sectores aún más grandes, sobre los cuales se desarrollan tres tipos de flujo: superficial, concentrado poco profundo y en conductos.
Los parámetros de los esquemas se muestran en la Tabla N° 5.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_p)</td>
<td>96</td>
<td>30</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(L) [m]</td>
<td>24.2</td>
<td>40.1</td>
<td>158.5</td>
<td>700</td>
</tr>
<tr>
<td>(A) [ha]</td>
<td>0.2</td>
<td>0.6</td>
<td>4.3</td>
<td>56</td>
</tr>
<tr>
<td>(D_{CC}) [m/ha]</td>
<td>226.6</td>
<td>143.3</td>
<td>36.7</td>
<td>28.0</td>
</tr>
<tr>
<td>(D_{CO}) [m/ha]</td>
<td>107.8</td>
<td>39.3</td>
<td>19.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

 dónde \(D_{CO} \) es la densidad de conductos subterráneos.

Calibración de rugosidades con eventos observados

Se calibró el modelo con 11 eventos precipitación-escorrentía observados. Las pérdidas de escurrimiento se determinaron con el método de Tasa de Pérdida Constante, verificando el volumen escurrido observado. La tasa de pérdida media obtenida entre eventos fue de 6.4 mm/h, con un desvío estándar de 3.0 mm/h. Se aplicó este método por ser el que mejor se ajustó a los caudales observados.

Para cada escala se calibró un coeficiente de rugosidad único para todos los planos, dado que la cobertura de la cuenca es suficientemente homogénea. Para las cunetas y conductos se adoptó un coeficiente de rugosidad de 0.013, en función del material (concreto) y estado de los mismos y se mantuvo ese valor para las distintas escalas y eventos.

Con el objeto de auxiliar la calibración, para cada hidrograma simulado se calcularon el coeficiente de eficiencia, \(E \) (Nash y Sutcliffe, 1970) y el error estándar de estimación, \(\sigma \), según las siguientes expresiones:

\[
E = 1 - \sqrt{\frac{\sum_{i=1}^{n} \left(Q_i^c - Q_i^l \right)^2}{\sum_{i=1}^{n} \left(Q_i^c - Q_i^s \right)^2}} \tag{30}
\]

\[
\sigma = \sqrt{\frac{\sum_{i=1}^{n} \left(Q_i^c - Q_i^s \right)^2}{n-1}} \tag{31}
\]

donde \(Q_i^c \) y \(Q_i^l \) son los caudales observado y calculado al tiempo \(t \); \(Q_i^s \), el caudal observado medio y \(n \), el número de intervalos de tiempo.

También se calcularon los errores relativos del caudal máximo, tiempo al máximo y volumen escurrido.

Para la calibración del modelo se seleccionaron tormentas con intensidades de lluvia en exceso bajas a medias, tal que los caudales generados por las mismas no hayan superado la capacidad de conducción de los conductos subterráneos. Se planteó esta condición para que los hidrogramas observados no estén influenciados por almacenamientos o efectos de remanso generados en dichos conductos.

Los hidrogramas observados que resultaron del desarrollo de tormentas complejas, con más de un caudal máximo claramente definidos y un segmento de recesión después del primer máximo, fueron separados en hidrogramas simples de máximo único aplicando el procedimiento propuesto por Linsley et al. (1977).

Siguiendo el criterio propuesto por Alley (1986), se consideró que los resultados del modelo son aceptables cuando los errores relativos del caudal máximo, tiempo al máximo y volumen escurrido son simultáneamente inferiores al 20%. Para cada escala y evento se realizaron simulaciones del modelo con distintas rugosidades del flujo superficial. Se seleccionó como rugosidad de calibración aquella para la cual el hidrograma simulado maximizó \(E \) y satisfizo los errores mencionados.

Los parámetros de las tormentas consideradas y las rugosidades de calibración obtenidas se muestran en la Tabla N° 6.

<table>
<thead>
<tr>
<th>Evento</th>
<th>(t) [min]</th>
<th>(i) [mm/h]</th>
<th>Rugosidades de Calibración</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/4/95 - 2</td>
<td>63</td>
<td>2.0</td>
<td>0.055 0.030 0.008</td>
</tr>
<tr>
<td>24/04/95 - 1</td>
<td>42</td>
<td>1.9</td>
<td>0.025 0.012 0.003</td>
</tr>
<tr>
<td>24/04/95 - 2</td>
<td>55</td>
<td>2.5</td>
<td>0.035 0.020 0.006</td>
</tr>
<tr>
<td>11/05/95 - 1</td>
<td>7</td>
<td>9.3</td>
<td>0.020 0.010 0.002</td>
</tr>
<tr>
<td>11/05/95 - 2</td>
<td>10</td>
<td>5.5</td>
<td>0.015 0.008 0.002</td>
</tr>
<tr>
<td>09/06/95</td>
<td>45</td>
<td>3.1</td>
<td>0.020 0.012 0.004</td>
</tr>
<tr>
<td>22/11/95 - 1</td>
<td>17</td>
<td>3.1</td>
<td>0.010 0.005 0.002</td>
</tr>
<tr>
<td>22/11/95 - 2</td>
<td>5</td>
<td>4.3</td>
<td>0.012 0.005 0.001</td>
</tr>
<tr>
<td>30/01/96 - 1</td>
<td>6</td>
<td>3.7</td>
<td>0.015 0.007 0.002</td>
</tr>
<tr>
<td>30/01/96 - 2</td>
<td>41</td>
<td>2.7</td>
<td>0.045 0.025 0.006</td>
</tr>
<tr>
<td>17/04/96</td>
<td>15</td>
<td>4.7</td>
<td>0.015 0.007 0.002</td>
</tr>
<tr>
<td>MIN</td>
<td>5</td>
<td>1.9</td>
<td>0.010 0.005 0.001</td>
</tr>
<tr>
<td>MÁX</td>
<td>63</td>
<td>9.3</td>
<td>0.055 0.030 0.008</td>
</tr>
<tr>
<td>PROM</td>
<td>28</td>
<td>3.9</td>
<td>0.024 0.013 0.003</td>
</tr>
<tr>
<td>DESV</td>
<td>22</td>
<td>2.1</td>
<td>0.015 0.008 0.002</td>
</tr>
</tbody>
</table>
donde \(t_1 \) es la duración de la lluvia en exceso; \(i \) la intensidad media de lluvia en exceso; MÍN, el valor mínimo; MÁX, el valor máximo; PROM, el promedio y DESV, el desvío estándar.

Se puede observar que existe una variabilidad de las rugosidades de calibración entre eventos, para cualquiera de las escalas analizadas. Para ED, el coeficiente de variación de las rugosidades (co- ciente entre el desvío y la media) es 0.63. Esto no es imprevisto, dado que la variación de la intensidad de lluvia y de otros factores de una tormenta a otra. Por otra parte, puede observarse que la rugosidad de calibración disminuye con el aumento de escala, para todos los eventos considerados.

La calibración resultó satisfactoria. Los estadísticos obtenidos se muestran en la Tabla N° 7.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>(E) [(\text{ad})]</th>
<th>(\sigma) [(\text{m}^3/\text{s})]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>MÍN</td>
<td>0.83</td>
<td>0.79</td>
</tr>
<tr>
<td>MÁX</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>PROM</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td>DESV</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Para ejemplificar la calibración obtenida, se muestran los hidrogramas observados y simulados de dos eventos en las Figuras N° 10.a y N° 10.b.

Puede observarse que los hidrogramas simulados con las distintas escalas son similares. Además, los estadísticos que evalúan la calibración son similares para las distintas escalas, lo que también refleja una similitud hidrológica entre éstas.

Determinación de rugosidades efectivas conservando \(S_{eq} \)

Se calculó el \(S_{eq} \) para la ED (A), aplicando la rugosidad de calibración promedio (\(N = 0.024 \)) y asumiendo que la cuenca es totalmente impermeable. Se consideró una lluvia en exceso de intensidad constante, igual a la intensidad media de los eventos observados (3.9 mm/h) y de 1 h de duración, suficientemente mayor al \(t_1 \) de todos los planes.

Luego, se calcularon los valores \(N_B^a \) y \(N_C^a \) por aproximación, de manera de mantener constante el \(S_{eq} \) obtenido para A. Para cada escala, se calcularon los almacenamientos aportados por los planos (\(S_p \)), cunetas (\(S_{CC} \)) y conductos (\(S_{CO} \)) y la variación de los dos últimos (\(\Delta S_{CC} \) y \(\Delta S_{CO} \)) para las escalas B y C respecto de A (Tabla N° 8). Tabla N° 8: Resultados obtenidos conservando \(S_{eq} \).

<table>
<thead>
<tr>
<th>Parámetro/Var.</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{eq}) total</td>
<td>103.2</td>
<td>102.7</td>
</tr>
<tr>
<td>(E_r S_{eq}) [%]</td>
<td>-----</td>
<td>-0.5</td>
</tr>
<tr>
<td>(N) y (N_{e})</td>
<td>0.024</td>
<td>0.013</td>
</tr>
<tr>
<td>(S_p) [(m^3)]</td>
<td>58.2</td>
<td>54.2</td>
</tr>
<tr>
<td>[%]</td>
<td>56.4</td>
<td>52.8</td>
</tr>
<tr>
<td>(S_{CC}) [(m^3)]</td>
<td>21.4</td>
<td>28.6</td>
</tr>
<tr>
<td>[%]</td>
<td>20.7</td>
<td>27.8</td>
</tr>
<tr>
<td>(S_{CO}) [(m^3)]</td>
<td>23.6</td>
<td>19.9</td>
</tr>
<tr>
<td>[%]</td>
<td>22.9</td>
<td>19.4</td>
</tr>
<tr>
<td>(\Delta S_{CC}) [%]</td>
<td>-----</td>
<td>7.1</td>
</tr>
<tr>
<td>(\Delta S_{CO}) [%]</td>
<td>-----</td>
<td>-3.5</td>
</tr>
<tr>
<td>(\Delta S_{CC} + \Delta S_{CO}) [%]</td>
<td>-----</td>
<td>3.6</td>
</tr>
</tbody>
</table>

![Figura 10.a](image1)

![Figura 10.b](image2)
Se puede observar que los valores de N^* obtenidos para B y C conservando S_eq son idénticos a los valores promedio obtenidos por calibración (Tabla N° 6).

Se evaluó la condición de equilibrio cimétrico del plano promedio de cada EA, para los eventos considerados, bajo la hipótesis de intensidad de lluvia constante (Tabla N° 9).

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>MAX</td>
<td>6.2</td>
<td>6.5</td>
</tr>
<tr>
<td>PROM</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>DESV</td>
<td>2.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Los valores de t^* obtenidos son, en general, superiores a la unidad. Esto indica que, bajo la hipótesis de intensidad de lluvia constante, los planos alcanzarían una condición de equilibrio cimétrico completo con los eventos, tal como es requerido por el procedimiento propuesto. La existencia de condiciones de equilibrio parcial para algunos eventos no ha originado errores significativos en los hidrogramas simulados con EA.

Aplicación del procedimiento sobre la cuenca Guadalupe Oeste

Descripción general de la cuenca

La cuenca se ubica en la ciudad de Santa Fe, Prov. de Santa Fe, República Argentina. Tiene una superficie de 2,002 km² (200,2 ha), una impermeabilidad del 41% y pendientes superficiales bajas, del orden del 0.4% (Figura N° 11).

Esta cuenca se encuentra instrumentada y es operada por la Facultad de Ingeniería y Ciencias Hídricas de la Universidad Nacional del Litoral (Pedraza et al., 1996).

Escala y esquemas de modelación considerados

Para la modelación de la cuenca se consideraron cuatro escalas: una de detalle (A) y tres agregadas (B, C y D) (Figuras N° 12.a a N° 12.d). Para estas 3 últimas, se implementó el modelo a la cuenca total y se lo aplicó con 12 eventos precipitación-escorrentía observados. Para la escala A, se implementó el modelo a la subcuenca A, de 47.6 ha (Figura N° 12.a) y se calibró el mismo en base a los hidrogramas simulados con el esquema B a la salida de dicha subcuenca.

Los parámetros de los esquemas se muestran en la Tabla N° 10.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^*</td>
<td>212</td>
<td>119</td>
<td>38</td>
<td>10</td>
</tr>
<tr>
<td>L [m]</td>
<td>28.3</td>
<td>73.4</td>
<td>138.5</td>
<td>214.0</td>
</tr>
<tr>
<td>A [ha]</td>
<td>0.2</td>
<td>1.7</td>
<td>5.3</td>
<td>20.0</td>
</tr>
<tr>
<td>D_{CC} [m/ha]</td>
<td>210.1</td>
<td>88.2</td>
<td>46.1</td>
<td>27.0</td>
</tr>
<tr>
<td>D_{CO} [m/ha]</td>
<td>52.4</td>
<td>43.6</td>
<td>23.8</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Calibración de rugosidades con eventos observados

Se seleccionaron tormentas con intensidades de lluvia en exceso bajas a medias, de modo que los hidrogramas observados no estén influenciados por almacenamientos o efectos de remanso generados en los conductos subterráneos.

Las pérdidas de escurrimiento se determinaron con el método del Número de Curva (U.S. Soil Conservation Service, 1986). Para cada evento, se calibró el parámetro CN de manera que el volumen escurrido calculado se ajuste al observado. El valor obtenido del CN promedio entre eventos fue de 85.1.

Para cada escala, se calibró un coeficiente de rugosidad único para todos los planos. Para las cuencas y conductos se adoptó un coeficiente de rugosidad de 0.015, en base al material (concreto) y estado de los mismos y se mantuvo ese valor para las distintas escalas y eventos.
Los parámetros de las tormentas analizadas y las rugosidades de calibración obtenidas para cada escala y evento, se muestran en la Tabla N° 11.

Se observa una variabilidad de las rugosidades de calibración entre eventos. Para ED, el coeficiente de variación de las rugosidades es 0.20.
También en esta cuenca, la rugosidad de calibración disminuye con el aumento de escala, para todos los eventos considerados.

La rugosidad de ED promedio entre eventos obtenida por calibración es de un orden de magnitud mayor a la determinada para la cuenca anterior. Esto es debido a las diferentes coberturas de las cuencas; mientras que en Guadalupe Oeste predomina la superficie permeable (59%, con cobertura de gramilla), en Sant Boi la superficie es prácticamente impermeable (90%). Como se sabe, el coeficiente de rugosidad de suelos con cobertura de pastos es significativamente mayor al de una superficie de concreto/asfalto.

La calibración resultó satisfactoria. Los valores de E y σ obtenidos se muestran en la Tabla N° 12.

Para ejemplificar la calibración obtenida, se muestran los hidrogramas observados y simulados de dos eventos en las Figuras N° 13.a y N° 13.b. En estas figuras, los hidrogramas utilizados para calibrar la escala A se denominan “HID. SUBCUENCA A”.

Determinación de rugosidades efectivas conservando S_{eq}

Se calculó el S_{eq} en la subcuenca A para la ED (A), aplicando la rugosidad de calibración promedio ($N = 0.275$) y asumiendo la hipótesis de que la cuenca es totalmente impermeable. Se consideró una lluvia en exceso de intensidad constante, igual a la intensidad media de los eventos observados (1.7 mm/h) y de 10 h de duración, suficientemente mayor al tiempo t_i de todos los planos. Luego, se calculó N_B^c para dicha subcuenca por aproximación, de manera de mantener constante el S_{eq} obtenido con la ED. A partir del valor de N_B^c obtenido (0.095), se calculó el S_{eq} para la cuenca total. Finalmente, se calcularon los valores de N_D^c y N_D^c por aproximación, de manera de mantener constante dicho almacenamiento.

Para cada escala, se calcularon los almacenamientos S_B, S_{CC} y S_{CO} y las variaciones de almacenamiento ΔS_{CC} y ΔS_{CO} de las escalas B, C y D respecto de A. Los resultados se muestran en la Tabla N° 13.

Se observa que los valores de N_B^c, N_D^c y N_D^c obtenidos conservando S_{eq} (0.095, 0.055 y 0.032) son similares a los valores promedio obtenidos por calibración (0.103, 0.062 y 0.034) (Tabla N° 11).

Tabla 12. Valores E y σ.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>E [ad]</th>
<th></th>
<th></th>
<th></th>
<th>σ [m²/s]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A(*)</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A(*)</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>MÍN</td>
<td>0.97</td>
<td>0.72</td>
<td>0.72</td>
<td>0.74</td>
<td>0.001</td>
<td>0.023</td>
<td>0.024</td>
</tr>
<tr>
<td>MÁX</td>
<td>0.99</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.008</td>
<td>0.107</td>
<td>0.113</td>
</tr>
<tr>
<td>PROM</td>
<td>0.99</td>
<td>0.90</td>
<td>0.89</td>
<td>0.90</td>
<td>0.004</td>
<td>0.049</td>
<td>0.051</td>
</tr>
<tr>
<td>DESV</td>
<td>0.01</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.002</td>
<td>0.026</td>
<td>0.028</td>
</tr>
</tbody>
</table>

(*) calibración con hidrogramas simulados con esquema B a la salida de la subcuenca A.

Figuras 13.a y 13.b
Tabla 13. Resultados obtenidos conservando S_{eq}.

<table>
<thead>
<tr>
<th>Parámetro/ Variación</th>
<th>Subcuenca A</th>
<th>Cuenca total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{eq} total [m³]</td>
<td>1445.6</td>
<td>1444.6</td>
</tr>
<tr>
<td>E_{R} [%]</td>
<td>-----</td>
<td>0.1</td>
</tr>
<tr>
<td>N ó N^*</td>
<td>0.275</td>
<td>0.095</td>
</tr>
<tr>
<td>S_{P} [m²]</td>
<td>1005.7</td>
<td>1012.1</td>
</tr>
<tr>
<td>S_{CC} [m²]</td>
<td>140.3</td>
<td>133.2</td>
</tr>
<tr>
<td>S_{CO} [m²]</td>
<td>200.6</td>
<td>209.3</td>
</tr>
<tr>
<td>ΔS_{CC} [%]</td>
<td>20.1</td>
<td>20.7</td>
</tr>
<tr>
<td>ΔS_{CO} [%]</td>
<td>-0.5</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

Se evaluó la condición de equilibrio cinemático del plano promedio de cada EA, para los eventos considerados, bajo la hipótesis de intensidad de lluvia constante (Tabla N° 14).

Tabla 14. Valores de t_i, del plano promedio de cada EA para distintos eventos.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>MAX</td>
<td>3.3</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>PROM</td>
<td>2.3</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>DESV</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Los valores de t_i obtenidos son, en general, superiores a la unidad, tal como es requerido por el procedimiento propuesto. La existencia de condiciones de equilibrio parcial para algunos eventos no ha originado errores significativos en los hidrogramas simularlos con EA.

Relación de similitud hidrológica de las cuencas experimentales

A partir de las longitudes y rugosidades obtenidas conservando S_{eq}, se calcularon los parámetros adimensionales de escalamieno E_{LB} (24) y E_{R} (25) para cada EA de ambas cuencas. Los valores obtenidos se muestran en la Tabla N° 15.

Se observó una notable correspondencia entre los parámetros de escalamieno de las dos cuencas, a pesar de las diferentes características de éstas, por lo que se ajustó una única función $E_{R} = f(E_{LB})$ representativa de ambas (Figura N° 14).

$$E_{R} = E_{LB}^{1.08}$$ (32)

La expresión obtenida indica que E_{R} disminuye a medida que aumenta E_{LB}, de manera similar a lo encontrado para la cuenca teórica con drenaje exclusivamente superficial.

Comparación de rugosidades efectivas obtenidas por distintos métodos

En la Tabla N° 16 se muestran a modo comparativo las rugosidades efectivas obtenidas por calibración, en base a eventos precipitación-escorentía observados (fila "CAL"), valores extraídos de Tablas N° 6 y N° 11 y las calculadas con los dos métodos alternativos del procedimiento propuesto:

a) Aplicando la modelación a ED y a cada EA y por aproximación determinar el valor de N que mantiene constante el S_{eq} (fila "S_{eq}", valores extraídos de Tablas N° 8 y 13).
b) A partir de la RSH (32). Para cada EA de ambas cuencas, a partir del valor de E_0, se obtuvo el correspondiente E_Q con (32) y luego se calculó N^* de (25) (fíla “RSH”).

También se presentan los errores relativos de las rugosidades calculadas con los dos últimos métodos respecto a las obtenidas por calibración.

<table>
<thead>
<tr>
<th>Método</th>
<th>Sant Bol</th>
<th>Guadalupe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
<td>0.013</td>
<td>0.003</td>
</tr>
<tr>
<td>S_{eq}</td>
<td>0.013</td>
<td>0.003</td>
</tr>
<tr>
<td>RSH</td>
<td>0.014</td>
<td>0.003</td>
</tr>
<tr>
<td>Er $N^*(S_{eq})$ [%]</td>
<td>0.0</td>
<td>-7.8</td>
</tr>
<tr>
<td>Er $N^*(RSH)$ [%]</td>
<td>7.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

donde Er $N^*(S_{eq})$ y Er $N^*(RSH)$ son los errores relativos de las rugosidades efectivas calculadas conservando S_{eq} y con la RSH, respecto a las obtenidas por calibración, respectivamente.

Puede observarse que los valores $N^*(S_{eq})$ y $N^*(RSH)$ son similares a los de calibración, con errores de hasta el $±11\%$ y $±19\%$, respectivamente.

Para evaluar el efecto de los errores en la estimación de N^* sobre los hidrogramas simulados, se realizó un análisis de sensibilidad de este parámetro. Para ello, se consideró el evento observado el 30/09/97 en la cuenca Guadalupe Oeste. El hidrograma de este evento es de máximo único y tiene curvas de crecida y de crecida típicas de tormentas simples. Se realizaron simulaciones con la escala C, para la cual se obtuvo el mayor Er $N^*(RSH)$ y se consideró una variación de $±20\%$ de la rugosidad de calibración de dicho evento ($N^* = 0.060$). Los errores relativos obtenidos para $N^* = 0.048$ y $N^* = 0.072$ son: en el caudal máximo, 9.9% y -8.4%, en el tiempo al máximo, -3.8% y 1.9% y en el volumen escuerado, 0.3% y -0.3%, respectivamente. Los valores de E obtenidos son 0.976 y 0.984 y los de \Box son 0.030 m3/s y 0.025 m3/s, para las rugosidades mencionadas.

En base a estos resultados y al criterio propuesto por Alley (1986), se concluye que los hidrogramas simulados con los valores $N^*(S_{eq})$ y $N^*(RSH)$ son aceptables. En consecuencia, se verifica la validez de los dos métodos alternativos de determinación de N^* contemplados en el procedimiento propuesto, bajo las condiciones consideradas: cuencas urbanas de diferentes características y tormentas de intensidad y duración variables.

Los resultados indican que una RSH permite estimar N^* con suficiente precisión, por lo que esta función se muestra como una herramienta promisoria para la agregación de N^* en cuencas pequeñas que carecen de datos para una modelación a ED.

ANÁLISIS COMPARATIVO DE LAS RSH OBTENIDAS

RSH de cuencas con EAP despreciable entre escalas

La RSH obtenida para las cuencas experimentales (32) es similar a la función:

$$E_R = E_Q^{(32)}$$ \(33\)

La justificación conceptual de esta semejanza se desarrolla a continuación.

Sean dos esquemas de modelación de una cuenca urbana homogénea con drenaje dual, uno correspondiente a ED y otro a una EA. El almacenamiento total para cada escala se calcula:

$$[S_{eq}]_{ED} = [S_\infty + S_0]_{ED} + [S_P]_{ED}$$ \(34\)

$$[S]_{EA} = [S_\infty + S_0]_{EA} + [S_P]_{EA}$$ \(35\)

Para conservar una similitud hidrológica entre ambas escalas, se debe mantener constante S_{eq}. Igualando miembro a miembro (34) y (35):

$$[S_\infty + S_0]_{EA} + [S_P]_{EA} = [S_\infty + S_0]_{ED} + [S_P]_{ED}$$ \(36\)

De donde:

$$[S_P]_{EA} = [S_\infty + S_0]_{ED} - [S_\infty + S_0]_{EA} + [S_P]$$ \(37\)

Al pasar de ED a EA, se remueven los conductos subterráneos de menor jerarquía. En consecuencia, $|S_{CO}|_{EA}$ es menor que $|S_{CO}|_{ED}$ y la variación de almacenamiento en conductos es negativa (AS$CO<0$).

Con la agregación también se remueven las cunetas de menor jerarquía, por lo que la longitud total de cunetas de EA es menor que la de ED. Sin embargo, las cunetas de EA conducen un caudal
mayor que las de ED, debido a que reciben el aporte adicional del caudal que era conducido por los conductos subterráneos de ED, que fueron removidos en EA. El aumento de caudal en las cunetas origina un aumento del volumen específico (por unidad de longitud de cuneta). En general, el flujo en conductos se desarrolla con tirantes y velocidades mayores que en las cunetas, por lo que el aumento del volumen específico suele tener un efecto mayor sobre \([S_{CA}]_{EA}\) que la disminución de su longitud. En consecuencia, la variación de almacenamiento en cunetas entre EA y ED es positiva (\(\Delta S_{CC} > 0\)).

Si se asume como hipótesis simplificativa que el almacenamiento en cauces (cunetas más conductos) es aproximadamente el mismo entre escalas; es decir, que EAP es despreciable, se tiene:

\[
[S_p]_{EA} = [S_p]_{ED}
\]

(38)

Esto significa asumir que al pasar de ED a EA se produce una variación positiva \(\Delta S_{CC}\) de similar valor absoluto a la variación negativa \(\Delta S_{CO}\). Reemplazando (38) en (37) y cancelando, se tiene:

\[
[S_p]_{EA} = [S_p]_{ED}
\]

(39)

En consecuencia, bajo la hipótesis mencionada, para conservar el \(S_{eq}\) total entre escalas se debe mantener constante \(S_{eq}\). Por lo tanto, el problema se reduce a un caso de escalamiento entre planos.

Para resolver este problema, se consideran los planos equivalentes de los esquemas ED y EA, denominados I y J, respectivamente. Los planos tienen dimensiones \((L_i, W_i)\) y \((L_j, W_j)\), donde \(L_i\) y \(L_j\) son las longitudes de los planos y \(W_i\) y \(W_j\) son los anchos.

\(L_i\) y \(L_j\) se calculan con la expresión (Alley y Smith, 1990):

\[
\frac{L_i}{L_j} = \frac{A_{i}}{A_{j}}
\]

(40)

\[
L_c = \frac{\sum_{i=1}^{n} L_i M_i}{\sum_{i=1}^{n} M_i}
\]

(41)

donde \(L_c\) es la longitud media ponderada de los planos; \(A\), la superficie de la cuenca; \(L_c\), la longitud total de cauces (cunetas y canales) representados en el esquema, que reciben escorrimento lateralmente; \(n\), la cantidad de tramos de cauce que tienen entrada lateral de caudal; \(L_i\), la longitud del tramo de cauce genérico \(i\) y \(M_i\), la cantidad de márgenes del tramo desde los que recibe caudal (1 ó 2).

\(W_i\) y \(W_j\) se calculan:

\[
W_i = \frac{A_{i}}{L_i}
\]

(42)

\[
W_j = \frac{A_{j}}{L_j}
\]

(43)

La pendiente de ambos planos es la misma, \(S_{eq}\), calculada como promedio ponderado por superficie.

Aplicando (19) a los planos equivalentes I y J, se tiene:

\[
N_i = \frac{\sqrt{i}}{(m+1)^{m} \left(\frac{S_{eq,i}}{W_i} \right)^{m} \left(\frac{L_i}{L_j} \right)^{m+1}}
\]

(44)

\[
N_j = \frac{\sqrt{j}}{(m+1)^{m} \left(\frac{S_{eq,j}}{W_j} \right)^{m} \left(\frac{L_j}{L_i} \right)^{m+1}}
\]

(45)

donde \(N_i\) es el coeficiente de rugosidad del plano \(I\); \(N_j\), la rugosidad efectiva del plano \(J; S_{eq,i}\) y \(S_{eq,j}\), los almacenamientos de equilibrio sobre los planos \(I\) y \(J\), respectivamente.

Planteando la igualdad de los almacenamientos sobre ambos planos equivalentes y dividiendo miembro a miembro (45) sobre (44), se tiene:

\[
N_j = N_i \left(\frac{W_j}{W_i} \right)^{m} \left(\frac{L_j}{L_i} \right)^{m+1}
\]

(46)

Reemplazando (42) y (43) en (46) y operando:

\[
N_j = N_i \left(\frac{L_j}{L_i} \right)
\]

(47)

Reemplazando (24) y (25) en (47) se obtiene (33). La expresión (47) no es impronta. Como el problema se reduce a un caso de escalamiento entre planos, de (4) se tiene que si se conserva \(S\) entre escalas, para obtener el mismo \(t_p\) se debe mantener constante el producto \((N \times L)\).

En las dos cuencas experimentales consideradas, la variación entre escalas del almacenamiento en cauces es muy pequeña, menor o igual al 4.4% del \(S_{eq}\) total en todos los casos (Tablas Nº 8 y Nº 13), lo que indica un alto grado de cumplimiento de la hipótesis. Debido a esto, la RSH obtenida (32) se aproxima a la expresión (33).
Análisis comparativo de las RSH obtenidas

Las diferencias entre las expresiones analíticas de las RSH obtenidas para la cuenca teórica y para las cuencas experimentales consideradas dependen de la importancia relativa de EAP respecto de EAG, tal como se describe a continuación.

En cuencas con variación de almacenamiento en cauces despreciable entre escalas (EAP = 0), como es el caso de las cuencas experimentales consideradas, sólo existe EAG. Este efecto atrae el caudal máximo simulado y para anularlo se debe disminuir ER de aumeneto de E1. En estos casos, se demuestra analíticamente que la RSH es explicada por (33), ER tiende a cero a medida que E1 tiende a infinito y la RSH es independiente de la rugosidad de ED y de otros factores.

En cuencas con variación de almacenamiento en cauces entre escalas (0 < EAP < EAG), como es el caso de la cuenca teórica, existen dos efectos superpuestos: EAG y EAP. El segundo anticipa el caudal máximo simulado y compensa parcialmente al primero. La RSH es explicada por (26), el decaimiento de ER es menor que en (33) y ER tiene asintóticamente a ERp, que depende fundamentalmente de la rugosidad de ED y en menor medida de la intensidad de lluvia y de la pendiente.

En la figura se indican con llaves los decaimientos de ER correspondientes a E1 = 5.0, para ambas RSH: a) para (33), ER pasa de un valor 1.0 para E1 = 1.0 (ED) a 0.2 para E1 = 5.0. El decaimiento es igual a 0.8 y anula EAG (EAP = 0); b) para (26), ER pasa de 1.0 (ED) a 0.68, el decaimiento es igual a 0.32 y anula EAN.

De (12) se obtiene:

\[EAP = EAN - EAG \quad (48) \]

Expresando cada efecto en términos de la variación de ER necesaria para anularlo, se tiene para E1 = 5.0; EAG = -0.8 y EAN = -0.32. Reemplazando en (48), se tiene que EAP = 0.48. Como se observa en la figura, para un E1 dado, la diferencia de ordenadas entre (26) y (33) representa el aumento relativo de ER necesario para anular EAP. Dicha diferencia tiende al valor ERp, cuando E1 tiende a infinito.

Los efectos EAG y EAP también pueden expresarse en términos volumétricos, por medio de las variaciones de almacenamiento ΔS_p y ΔS_CC, respectivamente. En base a los almacemientos en planos y cunetas obtenidos para los escenarios 2.04, 2.13, 2.22 y 2.31 de la cuenca teórica, correspondientes a las rugosidades de ED (N) 0.015, 0.050, 0.100 y 0.350 y a las condiciones medias de pendiente e intensidad de lluvia (S = 1.0 % e i = 40 mm/h), se calcularon las variaciones ΔS_p (EAG) y ΔS_CC (EAP) entre escalas (Tabla N° 17). En la tabla, también se expresan los valores de EAP (en valor absoluto) como porcentaje de EAG.

Cualquiera sea la EA que se analice (B, C ó D), se observa lo siguiente:

a) Para todas las rugosidades analizadas, EAG predomina sobre EAP. Esto confirma que en cuencas pequeñas, el efecto del flujo superficial predomina sobre el efecto del flujo en cauces. Dado el predominio de EAG sobre EAP, EAN atrasa el caudal máximo simulado y para anularlo, se debe disminuir N respecto a N.

<table>
<thead>
<tr>
<th>N</th>
<th>EAG</th>
<th>EAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔS_p,A,B</td>
<td>ΔS_p,A,C</td>
</tr>
<tr>
<td>0.015</td>
<td>1256</td>
<td>3190</td>
</tr>
<tr>
<td>0.050</td>
<td>2587</td>
<td>6570</td>
</tr>
<tr>
<td>0.100</td>
<td>3921</td>
<td>9958</td>
</tr>
<tr>
<td>0.350</td>
<td>8314</td>
<td>21117</td>
</tr>
</tbody>
</table>
b) La importancia relativa de EAP disminuye con el aumento de la rugosidad de ED. Para \(N = 0.015 \), EAP es aproximadamente un 60% de EAG; mientras que para \(N = 0.350 \), EAP es inferior al 10% de EAG.

La Figura N° 16 muestra los valores de \(E_R \) y \(E_L \) experimentales obtenidos en la cuenca teórica para los escenarios mencionados y los ajustes con la expresión exponencial (26) para cada rugosidad de ED.

![Figura 16](image)

Puede observarse que para altas rugosidades de ED (ej. \(N = 0.350 \)), los valores experimentales para escalas intermedias (ej. escala C) se desvían de (26) y son mejor explicados por la función potencial:

\[
E_R = E_L^a
\]

donde \(a \) es un exponente a determinar, \(a < 0 \). Para \(N = 0.350 \), \(a = -0.81 \).

La ecuación (49) es una función de transición entre (26) y (33), que expresa la RSH de cuencas en las cuales EAP es poco significativo respecto a EAG (0 < EAP < EAG; para \(N = 0.350 \), EAP \(\equiv 0.1 \) EAG). A medida que la variación entre escalas del almacenamiento en cauces (EAP) tiende a cero, el exponente tiende a -1.0. Esto significa que (33) es la función límite a la cual tiende (49) cuando EAP tiende a cero.

CONCLUSIONES

Se propone un procedimiento de agregación espacial de esquemas de modelación y parámetros para la simulación del flujo de agua superficial en cuencas urbanas usando modelos basados en la onda cinematica. Se basa en reemplazar cada subcuenca compleja (ED) por un único plano equivalente (EA), manteniendo constante \(S_{eq} \) a través de la variación de \(N^* \) y verificando el equilibrio cinematico completo. En cuencas que carecen de datos para una modelación a ED, se propone determinar \(N^* \) por medio de una RSH, la cual expresa \(N^* \) como función de la escala a través de parámetros adimensionales. Una RSH se obtiene en base a datos de una cuenca comparable, aplicando sistemáticamente el procedimiento para distintas EA. A partir de una RSH se puede estimar directamente \(N^* \) para diferentes EA, en base a longitudes de flujo medidas de un mapa de la cuenca y a valores de rugosidad de flujo superficial reportados en la literatura.

La aplicación del procedimiento de agregación, incluyendo la RSH, debe limitarse a cuencas pequeñas, en las cuales predomina el efecto del flujo superficial sobre el efecto del flujo en cauces en el hidrograma de salida.

Se verificó el procedimiento propuesto sobre una cuenca teórica y sobre dos cuencas urbanas experimentales, Sant Boi de Llobregat (España) y Guadalupe Oeste (Argentina), por medio de experimentos numéricos.

Los resultados obtenidos muestran una disminución de \(N^* \) con el aumento de la escala, lo que denota un predominio de EAG sobre EAP en cuencas pequeñas.

La expresión analítica de una RSH depende de la importancia relativa de EAP respecto de EAG. En cuencas con EAP \(\equiv 0 \), se demuestra analíticamente que la RSH es explicada por (33) y es independiente de la rugosidad de ED y de otros factores. En cuencas con 0 < EAP < EAG, la RSH se ajusta a (26) y depende fundamentalmente de la rugosidad de ED y en menor medida de la intensidad de lluvia y de la pendiente. Finalmente, en cuencas con 0 < EAP < EAG, la RSH se expresa con (49), que es una función de transición entre (26) y (33).

Se demuestra además que una RSH permite estimar \(N^* \) con suficiente precisión, por lo que esta función se muestra como una herramienta promisoria para la agregación de \(N^* \) en cuencas que carecen de datos para una modelación a ED.

Finalmente, se recomienda profundizar las investigaciones sobre una mayor cantidad de cuencas experimentales, con distintas condiciones.
de tamaño, pendiente, impermeabilidad, rugosidad de ED, densidad de cunetas y conductos, rangos de escalas y de lluvias. Asimismo, a futuros investigadores en este campo se sugiere evaluar la posibilidad de extender la aplicación del procedimiento y de la RSH a cuencas rurales pequeñas.

LISTA DE SÍMBOLOS

A: superficie de una subcuenca a agregar.
A*: superficie media de los planos de un esquema de modelación.
A_m*: área mojada de una sección transversal de un segmento.
D_c*: densidad de cunetas.
D_co*: densidad de conductos subterráneos.
E: coeficiente de eficiencia.
EA: escala agregada.
EAG: efecto de agregación geométrica.
EAN: efecto de agregación neto.
EAP: efecto de agregación de procesos.
ED: escala de detalle.
E_l*: razón de longitudes.
E_R*: razón de rugosidades.
E_RF*: valor final de E_R.
E_RX*: error relativo de la rugosidad equivalente.
E_RQ*: error relativo del caudal máximo.
E_Rm*: error relativo del almacenamiento de equilibrio.
i*: intensidad de lluvia en exceso.
L*: longitud de un plano.
L*: longitud media de los planos de un esquema de modelación.
L_c*: longitud del canal receptor.
L_{EA}: longitud del plano equivalente (EA).
L_{EA}: longitud media de los planos de EA.
L_{ED}: longitud media de los planos de ED.
m*: coeficiente cinemático de un plano.
m*: coeficiente cinemático de un canal.
m*: coeficiente de rugosidad de Manning para flujo en cauces.
N*: coeficiente de rugosidad para flujo superficial (ED).
N*: rugosidad media de planos de ED.
N*: rugosidad efectiva del plano equivalente (EA).
N*: valor final de N*.
N*: cantidad de planos de un esquema de modelación.
q*: caudal específico (por unidad de ancho del plano).
Q*: caudal.
S*: pendiente del plano.
S_C*: almacenamiento en cunetas y canales.
S_{C}: almacenamiento en conductos.
S_{C}: almacenamiento de equilibrio.
S_{C}: almacenamiento en planos.
t*: tiempo.
t*: tiempo de equilibrio del canal.
t*: tiempo de equilibrio del plano.
t*: duración de la lluvia en exceso.
t*: duración de lluvia adimensional.
W*: ancho del plano.
x*: distancia en el sentido del flujo.
y*: tirante.
y*: tirante medio.
α*: coeficiente cinemático de un plano.
α*: coeficiente cinemático de un canal.
ΔS_{CC}: variación entre escalas de almacenamiento en cunetas.
ΔS_{CO}: variación entre escalas de almacenamiento en conductos.
Δx*: incremento de longitud entre dos secciones consecutivas de un segmento.
Δt*: intervalo de tiempo.
σ*: error estándar de estimación.

REFERENCIAS

