Farmer’s subjective elicited water response function for intensive olives and compromise programming method for irrigation supply decision


  • Julio Berbel Universidad de Córdoba
  • Carlos Gutiérrez-Martín Universidad de Córdoba



Compromise programming, deficit, irrigation, decision maker judgment, probability density function, water production function


This research analyses the subjective crop yield-water relationship and proposes a method to determine water supply in irrigated olives. The probability density for water response functions (PDF) is elicited from a series of interviews carried out on a wide group of farmers. The elicitation technique is based upon the triangular distribution (highest possible, most frequent and lowest possible) and estimates of yield related to water supply (low, ‘normal’ and full irrigation). The model presented illustrates the possibility of implementing simple decision models to support farmers to manage water considering the objectives of maximizing profit and minimizing risk.


Download data is not yet available.

Author Biographies

Julio Berbel, Universidad de Córdoba

Dpto. Economía Agraria

Carlos Gutiérrez-Martín, Universidad de Córdoba

Dpto. Economía Agraria


Anderson, J.R., Dillon, J.L. and Hardaker, J.B. (1977). Agricultural decision analysis. Iowa State University Press.

Ballestero, E. (1973). "Nota sobre un nuevo método rápido de valoración". Revista de Estudios Agrosociales, 85: 75-78.

Ballestero, E. and Romero, C. (1991). "A theorem connecting utility function optimization and compromise programming". Operations Research Letters, 10(7): 421-427.

Ballestero, E. and Romero, C. (1996). "Portfolio selection: A compromise programming solution". Journal of the Operational Research Society, 47(11): 1377-1386.

Berbel, J. (1993). "Risk programming in agricultural systems: A multiple criteria analysis". Agricultural Systems, 41(3): 275-288.

Berbel, J., Mesa-Jurado, M.A. and Piston, J.M. (2011). "Value of irrigation water in Guadalquivir Basin (Spain) by residual value method". Water Resources Management, 25(6): 1565-1579.

Berbel, J., Pedraza, V. and Giannoccaro, G. (2013). "The trajectory towards basin closure of a European River: Guadalquivir". International Journal of River Basin Management, 11(1): 111-119.

Clop-Gallart, M.M. and Juárez-Rubio, F. (2007). "Elicitation of subjective crop yield PDF [probability density functions]". Spanish Journal of Agricultural Research, 5(1): 16-24.

Confederación Hidrográfica del Guadalquivir (2010). Propuesta de Proyecto de Plan Hidrológico de la Demarcación Hidrográfica del Guadalquivir.

Doorenbos, J. and Kassam, A. (1979). "Yield response to water". FAO Irrigation and Drainage Paper, 33.

Gómez-Limón, J.A., Berbel, J. and Arriaza, M. (2007). "MCDM farm system analysis for public management of irrigated agriculture". En Weintraub, A., Romero, C., Bjørndal, T., Epstein, R. y Miranda, J. (Eds.): Handbook Of Operations Research In Natural Resources. Springer, New York, 99: 93-114.

Gómez-Limón, J.A., Riesgo, L. and Arriaza, M. (2004). "Multi-criteria analysis of input use in agriculture". Journal of Agricultural Economics, 55(3): 541-564.

Greiner, R., Patterson, L. and Miller, O. (2009). "Motivations, risk perceptions and adoption of conservation practices by farmers". Agricultural Systems, 99(2-3): 86-104.

Griffiths, W.E., Anderson, J.R. and Hamal, K.B. (1987). "Subjective distributions as econometric response data". Australian Journal of Agricultural Economics, 31(2): 127-141.

Grové, B. (2006). "Stochastic efficiency optimisation of alternative agricultural water use strategies". Agrekon, 45(4): 406-420.

Hardaker, J.B., Huirne, R.B.M., Anderson, J.R. and Lien, G. (2004). Coping with risk in agriculture. CABI publishing.

Hardaker, J.B. and Lien, G. (2010). "Probabilities for decision analysis in agriculture and rural resource economics: The need for a paradigm change". Agricultural Systems, 103(6): 345-350.

Hazell, P.B.R. and Norton, R.D. (1986). Mathematical programming for economic analysis in agriculture. Macmillan, New York.

Junta de Andalucía (2002). El olivar andaluz. Unidad de Prospectiva de la Consejería de Agricultura y Pesca de la Junta de Andalucía y Empresa Pública de Desarrollo Agrario y Pesquero de Andalucía, Sevilla.

López-Baldovin, M.J., Gutiérrez-Martin, C. and Berbel, J. (2006). "Multicriteria and multiperiod programming for scenario analysis in Guadalquivir river irrigated farming". Journal of the Operational Research Society, 57(5): 499-509.

MAGRAMA. (2014). Resultados técnico-económicos de Cultivos Leñosos 2013. Subdirección General de Análisis, Prospectiva y Coordinación, Subsecretaría. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid.

Mesa-Jurado, M.A., Berbel, J. and Orgaz, F. (2010). "Estimating marginal value of water for irrigated olive grove with the production function method". Spanish Journal of Agricultural Research, 8: 197-206.

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M.A. and Kijne, J. (2010). "Improving agricultural water productivity: Between optimism and caution". Agricultural Water Management, 97(4): 528-535.

Rejesus, R.M., Marra, M.C., Roberts, R.K., English, B.C., Larson, J.A. and Paxton, K.W. (2013). "Changes in producers' perceptions of within-filed yield variability after adoption of cotton yield monitors". Journal of Agricultural and Applied Economics, 45(2): 295-312.

Romero, C. (1977). "Valoración por el método de las dos distribuciones beta: una extensión". Revista de Economía Política, 75: 47-62.

Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. (2012). Crop yield response to water. Food and Agriculture Organization of the United Nations, Rome.

Upendram, S., Wibowo, R. and Peterson, J.M. (2015). "Irrigation technology upgrade and water savings on the Kansas High Plains aquifer". Communication presented to 2015 Southern Agricultural Economics Association, Atlanta, Georgia.

Yu, P.L. (1973). "A Class of Solutions for Group Decision Problems". Management Science, 19(8): 936-946.