TY - JOUR
AU - Kumar, Prashant
AU - Sharma, Puneet
PY - 2023/10/02
Y2 - 2024/08/04
TI - On graph induced symbolic systems
JF - Applied General Topology
JA - Appl. Gen. Topol.
VL - 24
IS - 2
SE -
DO - 10.4995/agt.2023.16662
UR - https://polipapers.upv.es/index.php/AGT/article/view/16662
SP - 359-378
AB - <p>In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient conditions under which these questions can be answered affirmatively. We investigate the structure of the shift space using the generating matrices. We prove that any d-dimensional shift of finite type is finite if and only if it is conjugate to a shift generated through permutation matrices. We prove that if any triangular pattern of the form a b c can be extended to a 1 x 1 square then the two dimensional shift space possesses periodic points. We introduce the notion of an E-pair for a two dimensional shift space. Using the notion of an E-pair, we derive sufficient conditions for non-emptiness of the two dimensional shift space under discussion.</p>
ER -