@article{Karlova_2015, title={On C-embedded subspaces of the Sorgenfrey plane}, volume={16}, url={https://polipapers.upv.es/index.php/AGT/article/view/3161}, DOI={10.4995/agt.2015.3161}, abstractNote={We show that for a subspace $E\subseteq\{(x,-x):x\in\mathbb R\}$ of the Sorgenfrey plane $\mathbb S^2$ the following conditions are equivalent: (i) $E$ is $C$-embedded in $\mathbb S^2$; (ii) $E$ is $C^*$-embedded in $\mathbb S^2$; (iii) $E$ is a countable $G_\delta$-subspace of $\rr$ and (iv) $E$ is a countable functionally closed subspace of $\ss$. We also prove that $\mathbb S^2$ is not a $\delta$-normally separated space.}, number={1}, journal={Applied General Topology}, author={Karlova, Olena}, year={2015}, month={Feb.}, pages={65–74} }