@article{Deses_de Groot-Van der Voorde_Lowen-Colebunders_2003, title={Extensions of closure spaces}, volume={4}, url={https://polipapers.upv.es/index.php/AGT/article/view/2028}, DOI={10.4995/agt.2003.2028}, abstractNote={<p>A closure space X is a set endowed with a closure operator P(X) â†’ P(X), satisfying the usual topological axioms, except finite additivity. A T<sub>1</sub> closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We’ll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T<sub>1</sub> seminearness structure ϒ on X can in fact be induced by a T<sub>1</sub> closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T<sub>2</sub> and T<sub>3</sub> has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T<sub>2</sub> or strict regular closure extensions.</p>}, number={2}, journal={Applied General Topology}, author={Deses, D. and de Groot-Van der Voorde, A. and Lowen-Colebunders, E.}, year={2003}, month={Oct.}, pages={223–241} }