On monotonous separately continuous functions

Yaroslav I. Grushka


Let T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space.  The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each  variable (“t” and  “x”)  separately  and  function ƒx(t)  = ƒ(t,x) is  monotonous  on T for  every x ∈ X,  then ƒ is  continuous  mapping  from T × X to T1,  where T and T1 are  considered  as  topological  spaces  under  the order topology and T × X is considered as topological space under the Tychonoff topology on the Cartesian  product of topological spaces T and X.


separately continuous mappings; linearly ordered topological spaces; Young's theorem

Subject classification


Full Text:



G. Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., New York, 1967.

K. C. Ciesielski and D. Miller, A continuous tale on continuous and separately continuous functions, Real Analysis Exchange 41, no. 1 (2016), 19-54. https://doi.org/10.14321/realanalexch.41.1.0019

O. Karlova, V. Mykhaylyuk and O. Sobchuk, Diagonals of separately continuous functions and their analogs, Topology Appl. 160, no. 1 (2013), 1-8. https://doi.org/10.1016/j.topol.2012.09.003

J. L. Kelley, General topology, University series in higher mathematics, Van Nostrand, 1955.

R. L. Krusee and J. J. Deely, Joint continuity of monotonic functions, The American Mathematical Monthly 76, no. 1 (1969), 74-76. https://doi.org/10.1080/00029890.1969.12000144

V. Mykhajlyuk, The Baire classification of separately continuous and monotone functions, Scientific Herald of Yuriy Fedkovych Chernivtsi National University 349 (2007), 95-97 (Ukrainian).

V. Nesterenko, Joint properties of functions which monotony with respect to the first variable, Mathematical Bulletin of Taras Shevchenko Scientific Society 6 (2009), 195-201 (Ukrainian).

H. Voloshyn, V. Maslyuchenko and O. Maslyuchenko, On layer-wise uniform approximation of separately continuous functioins by polynomials, Mathematical Bulletin of Taras Shevchenko Scientific Society 10 (2013), 135-158 (Ukrainian).

W. Young, A note on monotone functions, The Quarterly Journal of Pure and Applied Mathematics (Oxford Ser.) 41 (1910), 79-87.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A new approach with new solutions to the Matkowski and Wesołowski problem
Janusz Morawiec, Thomas Zürcher
Aequationes mathematicae  year: 2021  
doi: 10.1007/s00010-021-00788-9

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt