Approximation of common fixed points in 2-Banach spaces with applications

D. Ramesh Kumar, M. Pitchaimani

Abstract

The purpose of this paper is to establish the existence and uniqueness of common fixed points of a family of self-mappings satisfying generalized rational contractive condition in 2-Banach spaces. An example is included to justify our results. We approximate the common fixed point by Mann and Picard type iteration schemes. Further, an application to well-posedness of the common fixed point problem is given. The presented results generalize many known results on 2-Banach spaces.


Keywords

common fixed point; Mann iteration; Picard iteration; well-posedness; 2-Banach space

Subject classification

47H10; 54H25.

Full Text:

PDF

References

M. Abbas, B. E. Rhoades and T. Nazir, Common fixed points for four maps in cone metric spaces, Applied Mathematics and Computation 216 (2010), 80–86. https://doi.org/10.1016/j.amc.2010.01.003

M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416–420. https://doi.org/10.1016/j.jmaa.2007.09.070

M. Arshad, E. Karapinar and J. Ahmad, Some unique fixed point theorems for rational contractions in partially ordered metric spaces, J. Inequal. Appl. 2013(1) (2013), 1–16. https://doi.org/10.1186/1029-242x-2013-248

A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and optimization 32, no. 3 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046

S. Banach, Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181

I. Beg and A. R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71, no.9 (2009), 3699–3704. https://doi.org/10.1016/j.na.2009.02.027

K. Cieplinski, Approximate multi-additive mappings in 2-Banach spaces, Bull. Iranian Math. Soc. 41, no. 3 (2015), 785–792.

B. K. Dass and S. Gupta, An extension of Banach’s contraction principle through rational expression, Indian J. Pure appl. Math. 6, no. 4 (1975), 1445–1458.

F. S. De Blasi and J. Myjak, Sur la porosité de l’ensemble des contractions sans point fixe, C. R. Acad. Sci. Paris 308 (1989), 51–54.

S. Gähler, 2-metrische Räume and ihre topologische strucktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109

S. Gähler, Uber die unifromisieberkeit 2-metrischer Räume, Math. Nachr. 28 (1965), 235–244. https://doi.org/10.1002/mana.19640280309

S. Gähler, Über 2-Banach-Räume, Math. Nachr. 42 (1969), 335–347. https://doi.org/10.1002/mana.19690420414

L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332, no. 2 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087

W. A. Kirk and N. Shahzad, Some fixed point results in ultrametric spaces, Topology and its Applications 159 (2012), 3327–3334. https://doi.org/10.1016/j.topol.2012.07.016

K. Iseki, Fixed point theorems in 2-metric space, Math.Seminar. Notes, Kobe Univ. 3(1975), 133–136.

E. Matouskova, S. Reich and A. J. Zaslavski, Genericity in nonexpansive mapping theory, Advanced Courses of Mathematical Analysis I, World Scientific Hackensack (2004), 81–98. https://doi.org/10.1142/9789812702371_0004

S. B. Nadler, Sequence of contraction and fixed points, Pacific J.Math. 27 (1968), 579–585. https://doi.org/10.2140/pjm.1968.27.579

H. K. Nashinea, M. Imdadb and M. Hasan, Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl. 7 (2014), 42–50. https://doi.org/10.22436/jnsa.007.01.05

B. G. Pachpatte, Common fixed point theorems for mappings satisfying rational inequalities, Indian J. Pure appl. Math. 10, no. 11 (1979), 1362–1368.

A.-D. Filip and A. Petrusel, Fixed point theorems for operators in generalized Kasahara spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 109, no. 1 (2015), 15–26. https://doi.org/10.1007/s13398-014-0163-9

M. Pitchaimani and D. Ramesh Kumar, Some common fixed point theorems using implicit relation in 2-Banach spaces, Surv. Math. Appl. 10 (2015), 159–168.

M. Pitchaimani and D. Ramesh Kumar, Common and coincidence fixed point theorems for asymptotically regular mappings in 2-Banach Spaces, Nonlinear Funct. Anal. Appl.21, no. 1 (2016), 131–144.

M. Pitchaimani and D. Ramesh Kumar, On construction of fixed point theory under implicit relation in Hilbert spaces, Nonlinear Funct. Anal. Appl. 21, no. 3 (2016), 513–522.

M. Pitchaimani and D. Ramesh Kumar, On Nadler type results in ultrametric spaces with application to well-posedness, Asian-European Journal of Mathematics 10, no. 4(2017), 1750073(1–15). https://doi.org/10.1142/s1793557117500735

M. Pitchaimani and D. Ramesh Kumar, Generalized Nadler type results in ultrametric spaces with application to well-posedness, Afr. Mat. 28 (2017), 957–970. https://doi.org/10.1007/s13370-017-0496-6

V. Popa, Well-Posedness of fixed problem in compact metric space, Bull. Univ. Petrol-Gaze, Ploicsti, sec. Mat Inform. Fiz. 60, no. 1 (2008), 1–4.

D. Ramesh Kumar and M. Pitchaimani, Set-valued contraction mappings of Presic-Reichtype in ultrametric spaces, Asian-European Journal of Mathematics 10, no. 4 (2017), 1750065 (1–15). https://doi.org/10.1142/s1793557117500656

D. Ramesh Kumar and M. Pitchaimani, A generalization ofset-valued Presic-Reich type contractions in ultrametric spaces with applications, J. Fixed Point Theory Appl. 19,no. 3 (2017), 1871–1887. https://doi.org/10.1007/s11784-016-0338-4

D. Ramesh Kumar and M. Pitchaimani, Approximation and stability of common fixed points of Presic type mappings in ultrametric spaces, J. Fixed Point Theory Appl. 20:4(2018). https://doi.org/10.1007/s11784-018-0504-y

D. Ramesh Kumar and M. Pitchaimani, New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process, Transactions of A. Razmadze Mathematical Institute, to appear. https://doi.org/10.1016/j.trmi.2018.01.006

S. Reich and A. T. Zaslawski, Well- Posedness of fixed point problems, Far East J. Math.sci, Special volume part III (2011), 393–401.

W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl. 2012, no. 1 (2012), 1–12. https://doi.org/10.1186/1029-242x-2012-84

R. J. Shahkoohi and A. Razani, Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl. 2014, no. 1 (2014), 1–23. https://doi.org/10.1186/1029-242x-2014-373

S. Shukla, Presic type results in 2-Banach spaces Afr. Mat. 25, no. 4 (2014), 1043–1051. https://doi.org/10.1007/s13370-013-0174-2

A. White, 2-Banach spaces, Math. Nachr. 42 (1969), 43–60. https://doi.org/10.1002/mana.19690420104

Abstract Views

1431
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt