τ-metrizable spaces
DOI:
https://doi.org/10.4995/agt.2018.9009Keywords:
τ-metric space, τ-metrizable space, τ-metrization theoremAbstract
In [1], A. A. Borubaev introduced the concept of τ-metric space, where τ is an arbitrary cardinal number. The class of τ-metric spaces as τ runs through the cardinal numbers contains all ordinary metric spaces (for τ = 1) and thus these spaces are a generalization of metric spaces. In this paper the notion of τ-metrizable space is considered.
Downloads
References
A. A. Borubaev, On some generalizations of metric, normed, and unitary spaces, Topology and its Applications 201 (2016), 344-349. https://doi.org/10.1016/j.topol.2015.12.045
R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.
J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
L. A. Steen and J. A. Jr. Seebach, Counterexamples in topology, Dover Publications, Inc., Mineola, NY, 1995.
S. Willard, General topology, Dover Publications, Inc., Mineola, NY, 2004.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.