Dynamics of real projective transformations

Sharan Gopal, Srikanth Ravulapalli


The dynamics of a projective transformation on a real projective space are studied in this paper. The two main aspects of these transformations that are studied here are the topological entropy and the zeta function. Topological entropy is an inherent property of a dynamical system whereas the zeta function is a useful tool for the study of periodic points. We find the zeta function for a general projective transformation but entropy only for certain transformations on the real projective line.


topological entropy; zeta function; projective transformation

Subject classification

54H20; 37B40.

Full Text:



R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Transactions of the American Mathematical Society 114 (1965), 309-319. https://doi.org/10.1090/S0002-9947-1965-0175106-9

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Transactions of the American Mathematical Society 153 (1971), 401-414. https://doi.org/10.1090/S0002-9947-1971-0274707-X

M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge University Press (2004).

S. G. Dani, Dynamical properties of linear and projective transformations and their applications, Indian J. Pure Appl. Math. 35 (2004), 1365-1394.

R. Devaney, An introduction to chaotic dynamical systems, Second edition, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989.

N. H. Kuiper, Topological conjugacy of real projective transformations, Topology 15 (1976), 13-22. https://doi.org/10.1016/0040-9383(76)90046-X

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt