Topological characterization of Gelfand and zero dimensional semirings
DOI:
https://doi.org/10.4995/agt.2018.7952Keywords:
Zariski topology, D-topology, conmutative semiring, Gelfand semiring, zero dimensional semiringAbstract
Let R be a conmutative semiring with 0 and 1, and let Spec(R) be the set of all proper prime ideals of R. Spec(R) can be endowed with two topologies, the Zariski topology and the D-topology. Let Max R denote the set of all maximals prime ideals of R. We prove that the two topologies coincide on Spec(R) and on Max R if and only if R is zero dimensional and Gelfand semiring, respectively.Downloads
References
H. Al-Ezeh, Topological characterization of certain classes of lattices, Rend. Sem. Univ. Padova 83 (1990), 13-18.
M. L. Colasante, C. Uzcátegui and J. Vielma, Boolean algebras and low separation axioms, Topology Proceedings 34 (2009), 1-15.
N. Rafi and G. C. Rao, Topological characterization of certain classes of almost distributive lattice, J. Appl. Math. & Informatics 33, no. 3-4 (2015), 317-325. https://doi.org/10.14317/jami.2015.317
M. T. Sancho, Methods of conmutative algebra for topology, Universidad de Salamanca, Departamento de matemáticas, (1987).
C. Uzcátegui and J. Vielma, Alexandroff topologies viewed as closed sets in the Cantor cube, Divulg. Mat. 13, no. 1 (2005), 45-53.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.