Counting coarse subsets of a countable group
Submitted: 2017-05-31
|Accepted: 2017-09-10
|Published: 2018-04-02
Downloads
Keywords:
ballean, coarse structure, asymorphism, coarse equivalence
Supporting agencies:
Abstract:
For every countable group G, there are 2ω distinct classes of coarselyequivalent subsets of G.
References:
T. Banakh, J. Higes and M. Zarichnyi, The coarse classification of countable abelian groups, Trans. Amer. Math. Soc. 362 (2010), 4755-4780. https://doi.org/10.1090/S0002-9947-10-05118-4
D. Dikranjan and N. Zava, Some categorical aspects of coarse spaces and ballean, Topology Appl. 225 (2017) 164-194. https://doi.org/10.1016/j.topol.2017.04.011
P. de la Harpe, Topics in geometric group theory, University Chicago Press, 2000.
I. V. Protasov, Morphisms of ball structures of groups and graphs, Ukr. Mat. Zh. 53 (2002), 847-855.
I. Protasov and T. Banakh, Ball structures and colorings of groups and graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL, Lviv, 2003.
I. Protasov and M. Zarichnyi, General asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
J. Roe, Lectures on coarse geometry, Amer. Math. Soc., Providence, R.I, 2003.