Counting coarse subsets of a countable group
DOI:
https://doi.org/10.4995/agt.2018.7721Keywords:
ballean, coarse structure, asymorphism, coarse equivalenceAbstract
For every countable group G, there are 2ω distinct classes of coarselyequivalent subsets of G.
Downloads
References
T. Banakh, J. Higes and M. Zarichnyi, The coarse classification of countable abelian groups, Trans. Amer. Math. Soc. 362 (2010), 4755-4780. https://doi.org/10.1090/S0002-9947-10-05118-4
D. Dikranjan and N. Zava, Some categorical aspects of coarse spaces and ballean, Topology Appl. 225 (2017) 164-194. https://doi.org/10.1016/j.topol.2017.04.011
P. de la Harpe, Topics in geometric group theory, University Chicago Press, 2000.
I. V. Protasov, Morphisms of ball structures of groups and graphs, Ukr. Mat. Zh. 53 (2002), 847-855.
I. Protasov and T. Banakh, Ball structures and colorings of groups and graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL, Lviv, 2003.
I. Protasov and M. Zarichnyi, General asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
J. Roe, Lectures on coarse geometry, Amer. Math. Soc., Providence, R.I, 2003.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.