Relation-theoretic metrical coincidence and common fixed point theorems under nonlinear contractions
DOI:
https://doi.org/10.4995/agt.2018.7677Keywords:
Complete metric spaces, binary relations, contraction mappings, fixed pointAbstract
In this paper, we prove coincidence and common fixed points results under nonlinear contractions on a metric space equipped with an arbitrary binary relation. Our results extend, generalize, modify and unify several known results especially those are contained in Berzig [J. Fixed Point Theory Appl. 12, 221-238 (2012))] and Alam and Imdad [To appear in Filomat (arXiv:1603.09159 (2016))]. Interestingly, a corollary to one of our main results under symmetric closure of a binary relation remains a sharpened version of a theorem due to Berzig. Finally, we use examples to highlight the accomplished improvements in the results of this paper.Downloads
References
M. Ahmadullah, J. Ali and M. Imdad, Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application, Fixed Point Theory Appl. 2016:42 (2016), 1-15. https://doi.org/10.1186/s13663-016-0531-6
M. Ahmadullah, M. Imdad and M. Arif, Common fixed point theorems under an implicit contractive condition on metric spaces endowed with an arbitrary binary relation, preprint (arXiv:1701.03154 (2017)).
M. Ahmadullah, M. Imdad and R. Gubran, Relation-theoretic metrical fixed point theorems under nonlinear contractions, Fixed Point Theory, to appear (arXiv:1611.04136v1 (2016)).
A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17, no. 4 (2015), 693-702 . https://doi.org/10.1007/s11784-015-0247-y
A. Alam and M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat 31, no. 14 (2017), 4421-4439. https://doi.org/10.2298/FIL1714421A
A. Alam and M. Imdad, Nonlinear contractions in metric spaces under locally T-transitive binary relations, Fixed Point Theory, to appear (arXiv:1512.00348v1 (2015)).
M. Altman, An integral test for series and generalized contractions, Am. Math. Mon. 82 (1975), 827-829. https://doi.org/10.2307/2319801
S. Banach, Sur les op$acute{e}$rations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
M. Berzig, Coincidence and common fixed point results on metric spaces endowed with arbitrary binary relation and applications, J. Fixed Point Theory Appl. 12 (2012), 221-238. https://doi.org/10.1007/s11784-013-0094-7
H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: A simple proof, J. Fixed Point Theory Appl. 16 (2015), 373-383. https://doi.org/10.1007/s11784-015-0218-3
L. B. Ciric, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45 (1974), 267-273. https://doi.org/10.2307/2040075
S. Ghods, M. E. Gordji, M. Ghods and M. Hadian, Comment on "Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces'' [Lakshmikantham and Ciric, Nonlinear Anal. TMA 70 (2009) 4341-4349], J. Comput. Anal. 14, no. 5 (2012), 958-966. https://doi.org/10.1016/j.na.2008.09.020
R. H. Haghi, Sh. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalization, Nonlinear Anal. 74 (2011), 1799-1803. https://doi.org/10.1016/j.na.2010.10.052
J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc. 136 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1
G. Jungck, Commutings maps and fixed points, Am. Math. Mon. 83, no. 4 (1976), 261-263. https://doi.org/10.2307/2318216
G. Jungck, Common fixed points for noncontinuous nonselfs maps on non-metric space, Far East J. Math. Sci. 4 (1996), 199-255.
G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9, no. 4 (1986), 771-779. https://doi.org/10.1155/S0161171286000935
S. Lipschutz, Schaum's outlines of theory and problems of set theory and related topics, McGraw-Hill, New York (1964).
R. D. Maddux, Relation algebras, Studies in Logic and the Foundations of Mathematics, 150, Elsevier B. V., Amsterdam (2006).
J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22, no. 3 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc. 132, no. 5 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal. 13 (2012), 82-97.
M. Turinici, Fixed points for monotone iteratively local contractions, Dem. Math. 19, no. 1 (1986), 171-180.
M. Turinici, Linear contractions in product ordered metric spaces, Ann. Univ. Ferrara. 59 (2013), 187-198. https://doi.org/10.1007/s11565-012-0164-6
M. Turinici, Ran-Reurings fixed point results in ordered metric spaces, Libertas Math. 31 (2011), 49-55.
M. Turinici, Nieto-Lopez theorems in ordered metric spaces, Math. Student 81, no. 1-4 (2012), 219-229.
S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Pub. Inst. Math. Soc. 32 (1982),149-153.
K. P. R. Sastry and I. S. R. Krishna Murthy, Common fixed points of two partially commuting tangential selfmaps on a metric space, J. Math. Anal. Appl. 250, no. 2 (2000), 731-734. https://doi.org/10.1006/jmaa.2000.7082
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.