Set-open topologies on function spaces




set-open topology, pseudocompact-open topology, C-compact- open topology, quasi-uniform convergence topology, right K- completeness, α-continuous function


Let X and Y be topological spaces, F(X,Y) the set of all functions from X into Y and C(X,Y) the set of all continuous functions in F(X,Y). We study various set-open topologies tλ (λ ⊆ P(X)) on F(X,Y) and consider their existence, comparison and coincidence in the setting of Y a general topological space as well as for Y = R. Further, we consider the parallel notion of quasi-uniform convergence topologies Uλ (λ ⊆ P(X)) on F(X,Y) to discuss Uλ-closedness and right Uλ-K-completeness properties of a certain subspace of F(X,Y) in the case of Y a locally symmetric quasi-uniform space. We include some counter-examples to justify our comments.


Download data is not yet available.

Author Biographies

Wafa Khalaf Alqurashi, Umm Al-Qura University

Department of Mathematical Science, College of Applied Sciences

Liaqat Ali Khan, Quaid-i-Azam University

Department of Mathematics

Alexander V. Osipov, Ural State University of Economics

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University


W. K. Alqurashi and L. A. Khan, Quasi-uniform convergence topologies on function spaces- Revisited, Appl. Gen. Top. 18, no. 2, (2017), 301-316.

R. F. Arens, A topology for spaces of transformations, Ann. Math. 47, no. 3 (1946), 480-495.

R. Arens and J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31.

A. Bouchair and S. Kelaiaia, Comparison of some set open topologies on C(X,Y), Topology Appl. 178, (2014), 352-359.

A. Di Concilio and S. A. Naimpally, Some proximal set-open topologies, Boll. Unione Mat. Ital. (8) 1-B, (2000), 173-191.

P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics, 77, Marcel Dekker, Inc., 1982.

R. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429-432.

D. Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303-308.

D. Gulick, The σ-compact-open topology and its relatives, Math. Scand. 30 (1972), 159-176.

D. Gulick and J. Schmets, Separability and semi-norm separability for spaces of bounded continuous functions, Bull. Soc. Roy. Sci. Leige 41 (1972), 254-260.

H. B. Hoyle, III, Function spaces for somewhat continuous functions, Czechoslovak Math. J. 21 (1971), 31-34.

J. R. Jackson, Comparison of topologies on function spaces, Proc. Amer. Math. Soc. 3 (1952), 156-158.

J. L. Kelley, General topology, D. Van Nostrand Company, New York, 1955.

J. L. Kelley and I. Namioka, Linear topological spaces, D. Van Nostrand, 1963.

L. A. Khan and K. Rowlands, The σ-compact-open topology and its relatives on a space of vector-valued functions, Boll. Unione Mat. Italiana (7) 5-B, (1991), 727-739.

J. L. Kohli and J. Aggarwal, Closedness of certain classes of functions in the topology of uniform convergence, Demonstratio Math. 45 (2012), 947-952.

S. Kundu and R. A. McCoy, Topologies between compact and uniform convergence on function spaces, Internat. J. Math. Math. Sci. 16, no. 1 (1993), 101-110.

S. Kundu and P. Garg, The pseudocompact-open topology on C(X), Topology Proceedings. Vol.~30, (2006), 279-299.

H.-P. A. Künzi, An introduction to quasi-uniform spaces, in: Beyond topology, Contemp. Math., 486, Amer. Math. Soc., Providence, RI, 2009, pp. 239-304.

H.-P. A. Künzi and S. Romaguera, Spaces of continuous functions and quasi-uniform convergence, Acta Math. Hungar. 75 (1997), 287-298.

A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, $alpha$-continuous and $alpha $-open mappings, Acta Math. Hungar. 41, (1983), 213-218.

R. A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206.

R. A. McCoy and I. Ntantu, Topological properties of function spaces, Lecture Notes in Math. No. 1315, Springer-Verlag, 1988.

S. B. Myers, Equicontinuous sets of mappings, Ann. Math. 47 (1946), 496-502.

S. A. Naimpally, Function spaces of quasi-uniform spaces, Indag. Math. 27 (1966), 768-771.

O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.

S. E. Nokhrin, Some properties of set-open topologies, J. Math. Sci. 144 (2007), 4123-4151.

S. E. Nokhrin and A. V. Osipov, On the coincidence of set-open and uniform topologies, Proc. Steklov Inst. Math. Suppl. 267 (2009), 184-191.

A. V. Osipov, The set-open topology, Topology Proc. 37 (2011), 205-217.

A. V. Osipov, The C-compact-open topology on function spaces, Topology Appl. 159, no. 13 (2012), 3059-3066.

A. V. Osipov, Topological-algebraic properties of function spaces with set-open topologies, TTopology Appl. 159, no. 13 (2012), 800-805.

A. V. Osipov, On the completeness properties of the C-compact-open topology on C(X), Ural Mathematical Journal 1, no. 1 (2015), 61-67.

A. V. Osipov, Uniformity of uniform convergence on the family of sets, Topology Proc. 50 (2017), 79-86.

B. Papadopoulos, (Quasi) Uniformities on the set of bounded maps, Internat. J. Math. & Math. Scl. 17 (1994), 693-696.

W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316-317.

S. Romaguera, On hereditary precompactness and completeness in quasi-uniform spaces, Acta Math. Hungar. 73 (1996), 159-178.




How to Cite

W. K. Alqurashi, L. A. Khan, and A. V. Osipov, “Set-open topologies on function spaces”, Appl. Gen. Topol., vol. 19, no. 1, pp. 55–64, Apr. 2018.



Regular Articles