Set-open topologies on function spaces
DOI:
https://doi.org/10.4995/agt.2018.7630Keywords:
set-open topology, pseudocompact-open topology, C-compact- open topology, quasi-uniform convergence topology, right K- completeness, α-continuous functionAbstract
Let X and Y be topological spaces, F(X,Y) the set of all functions from X into Y and C(X,Y) the set of all continuous functions in F(X,Y). We study various set-open topologies tλ (λ ⊆ P(X)) on F(X,Y) and consider their existence, comparison and coincidence in the setting of Y a general topological space as well as for Y = R. Further, we consider the parallel notion of quasi-uniform convergence topologies Uλ (λ ⊆ P(X)) on F(X,Y) to discuss Uλ-closedness and right Uλ-K-completeness properties of a certain subspace of F(X,Y) in the case of Y a locally symmetric quasi-uniform space. We include some counter-examples to justify our comments.
Downloads
References
W. K. Alqurashi and L. A. Khan, Quasi-uniform convergence topologies on function spaces- Revisited, Appl. Gen. Top. 18, no. 2, (2017), 301-316. https://doi.org/10.4995/agt.2017.7048
R. F. Arens, A topology for spaces of transformations, Ann. Math. 47, no. 3 (1946), 480-495. https://doi.org/10.2307/1969087
R. Arens and J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31. https://doi.org/10.2140/pjm.1951.1.5
A. Bouchair and S. Kelaiaia, Comparison of some set open topologies on C(X,Y), Topology Appl. 178, (2014), 352-359. https://doi.org/10.1016/j.topol.2014.10.008
A. Di Concilio and S. A. Naimpally, Some proximal set-open topologies, Boll. Unione Mat. Ital. (8) 1-B, (2000), 173-191.
P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics, 77, Marcel Dekker, Inc., 1982.
R. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429-432. https://doi.org/10.1090/S0002-9904-1945-08370-0
D. Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303-308. https://doi.org/10.1090/S0002-9939-1950-0036503-X
D. Gulick, The σ-compact-open topology and its relatives, Math. Scand. 30 (1972), 159-176. https://doi.org/10.7146/math.scand.a-11072
D. Gulick and J. Schmets, Separability and semi-norm separability for spaces of bounded continuous functions, Bull. Soc. Roy. Sci. Leige 41 (1972), 254-260.
H. B. Hoyle, III, Function spaces for somewhat continuous functions, Czechoslovak Math. J. 21 (1971), 31-34.
J. R. Jackson, Comparison of topologies on function spaces, Proc. Amer. Math. Soc. 3 (1952), 156-158. https://doi.org/10.1090/S0002-9939-1952-0046031-5
J. L. Kelley, General topology, D. Van Nostrand Company, New York, 1955.
J. L. Kelley and I. Namioka, Linear topological spaces, D. Van Nostrand, 1963. https://doi.org/10.1007/978-3-662-41914-4
L. A. Khan and K. Rowlands, The σ-compact-open topology and its relatives on a space of vector-valued functions, Boll. Unione Mat. Italiana (7) 5-B, (1991), 727-739.
J. L. Kohli and J. Aggarwal, Closedness of certain classes of functions in the topology of uniform convergence, Demonstratio Math. 45 (2012), 947-952. https://doi.org/10.1515/dema-2013-0413
S. Kundu and R. A. McCoy, Topologies between compact and uniform convergence on function spaces, Internat. J. Math. Math. Sci. 16, no. 1 (1993), 101-110. https://doi.org/10.1155/S0161171293000122
S. Kundu and P. Garg, The pseudocompact-open topology on C(X), Topology Proceedings. Vol.~30, (2006), 279-299.
H.-P. A. Künzi, An introduction to quasi-uniform spaces, in: Beyond topology, Contemp. Math., 486, Amer. Math. Soc., Providence, RI, 2009, pp. 239-304. https://doi.org/10.1090/conm/486/09511
H.-P. A. Künzi and S. Romaguera, Spaces of continuous functions and quasi-uniform convergence, Acta Math. Hungar. 75 (1997), 287-298. https://doi.org/10.1023/A:1006593505036
A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, $alpha$-continuous and $alpha $-open mappings, Acta Math. Hungar. 41, (1983), 213-218. https://doi.org/10.1007/BF01961309
R. A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206. https://doi.org/10.1016/0166-8641(86)90009-X
R. A. McCoy and I. Ntantu, Topological properties of function spaces, Lecture Notes in Math. No. 1315, Springer-Verlag, 1988.
S. B. Myers, Equicontinuous sets of mappings, Ann. Math. 47 (1946), 496-502. https://doi.org/10.2307/1969088
S. A. Naimpally, Function spaces of quasi-uniform spaces, Indag. Math. 27 (1966), 768-771.
O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970. https://doi.org/10.2140/pjm.1965.15.961
S. E. Nokhrin, Some properties of set-open topologies, J. Math. Sci. 144 (2007), 4123-4151. https://doi.org/10.1007/s10958-007-0258-3
S. E. Nokhrin and A. V. Osipov, On the coincidence of set-open and uniform topologies, Proc. Steklov Inst. Math. Suppl. 267 (2009), 184-191. https://doi.org/10.1134/S0081543809070165
A. V. Osipov, The set-open topology, Topology Proc. 37 (2011), 205-217.
A. V. Osipov, The C-compact-open topology on function spaces, Topology Appl. 159, no. 13 (2012), 3059-3066. https://doi.org/10.1016/j.topol.2012.05.018
A. V. Osipov, Topological-algebraic properties of function spaces with set-open topologies, TTopology Appl. 159, no. 13 (2012), 800-805. https://doi.org/10.1016/j.topol.2011.11.049
A. V. Osipov, On the completeness properties of the C-compact-open topology on C(X), Ural Mathematical Journal 1, no. 1 (2015), 61-67. https://doi.org/10.15826/umj.2015.1.006
A. V. Osipov, Uniformity of uniform convergence on the family of sets, Topology Proc. 50 (2017), 79-86.
B. Papadopoulos, (Quasi) Uniformities on the set of bounded maps, Internat. J. Math. & Math. Scl. 17 (1994), 693-696. https://doi.org/10.1155/S0161171294000980
W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316-317. https://doi.org/10.1007/BF01440953
S. Romaguera, On hereditary precompactness and completeness in quasi-uniform spaces, Acta Math. Hungar. 73 (1996), 159-178. https://doi.org/10.1007/BF00058951
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.