Convergence theorems for finding the split common null point in Banach spaces
DOI:
https://doi.org/10.4995/agt.2017.7257Keywords:
convergence theorem, split common null point problem, Banach space, bounded linear operator.Abstract
In this paper, we introduce a new iterative scheme for solving the split common null point problem. We then prove the strong convergence theorem under suitable conditions. Finally, we give some numerical examples for our results.
Downloads
References
A.S. Alofi, M. Alsulami, W. Takahashi, Strongly convergent iterative method for the split common null point problem in Banach spaces, J. Nonlinear Convex Anal. 2 (2016), 311-324.
Â
M. Alsulami, W. Takahashi, Iterative methods for the split feasibility problem in Banach spaces, J. Convex Anal. 16 (2015), 585-596.
Â
K. Aoyama, Y. Yasunori, W. Takahashi, M. Toyoda, On a strongly nonexpansive sequence in a Hilbert space, J. Nonlinear Convex Anal. 8 (2007), 471-489.
Â
F. E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968) 89-113.
https://doi.org/10.1007/BF01418765
Â
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Prob. 18 (2002), 441-453.
https://doi.org/10.1088/0266-5611/18/2/310
Â
C. Byrne, Y. Censor, A. Gibili, S. Reich, The split common null point problem. J. Nonlinear Convex Anal. 13 (2012), 759-775.
Â
B. Halpern, Fixed point of nonexpanding maps, Bull. Amer. Math. Soc. 73(1967), 506-961.
https://doi.org/10.1090/S0002-9904-1967-11864-0
Â
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms. 8 (1994), 221-239
https://doi.org/10.1007/BF02142692
Â
P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
https://doi.org/10.1007/s11228-008-0102-z
Â
W. R. Mann, Mean value methods in it iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
https://doi.org/10.1090/S0002-9939-1953-0054846-3
Â
A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275-283.
https://doi.org/10.1007/s10957-011-9814-6
Â
A. Moudafi, Viscosity approximation method for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55.
https://doi.org/10.1006/jmaa.1999.6615
Â
A. Moudafi, B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett. 8 (2014), 2099-2110.
https://doi.org/10.1007/s11590-013-0708-4
Â
W. Takahashi, Convex Analysis and Approximation of Fixed Point, Yokohama Publishers,Yokohama, 2009.
Â
W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
Â
W. Takahashi, Nonlinear Functional Analysis, Yokohama, Publishers, Yokohama, 2000.
Â
F. Wang, A new algorithm for solving the multiple-sets split feasibility problem in certain Banach spaces, Numer. Funct. Anal. Optim. 35 (2014), 99-110.
https://doi.org/10.1080/01630563.2013.809360
Â
H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.