Existence of common fixed points of improved F-contraction on partial metric spaces

Muhammad Nazam, Muhammad Arshad, Mujahid Abbas


Following the approach of $F$- contraction introduced by Wardowski \cite{DW}, in this paper, we introduce improved $F$-contraction of rational type in the framework of partial metric spaces and used it to obtain a common fixed point theorem for a pair of self mappings. We show, through example, that improved $F$-contraction is more general than $F$- contraction and guarantees fixed points in those cases where $F$-contraction fails to provide. Moreover, we apply this fixed point result to show the existence of common solution of the system of integral equations.


fixed point; improved $F$-contraction; integral equations; complete partial metric space

Subject classification

47H10, 47H04, 54H25

Full Text:



M. Abbas, T. Nazir and S. Romaguera, Fixed point results for generalized cyclic contraction mappings in partial metric spaces, RACSAM 106 (2012), 287-297.


T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904.


I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778-2785.


I. Altun and S. Romaguera. Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Applicable Analysis and Discrete Mathematics 6, no. 2 (2012), 247-256.


M. Arshad, A. Hussain and M. Nazam, Some fixed point results for multivalued F-contraction on closed ball, Func. Anal.-TMA 2 (2016), 69-80

S. Chandok, Some fixed point theorems for $(alpha,beta)$-admissible Geraghty type contractive mappings and related results, Math. Sci. 9 (2015), 127-135.


S. H. Cho, S. Bae and E. Karapinar Fixed point theorems for $alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013, 2013:329.

M. Cosentino and P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-Type, Filomat 28, no. 4 (2014), 715-722.


A. Hussain, M. Nazam and M. Arshad, Connection of Ciric type F-contraction involving fixed point on closed ball, GU J. Sci. 30, no. 1 (2017), 283-291.

A. Hussain, H. F. Ahmad, M. Nazam and M. Arshad, New type of multivalued F-contraction involving fixed points on closed ball, J. Math. Computer Sci. 10 (2017), 246-254.


S. G. Matthews, Partial metric topology, in: Proceedings of the $11^{th}$ Summer Conference on General Topology and Applications, Vol. 728, pp.183-197, The New York Academy of Sciences, August, 1995.

M. Nazam, M. Arshad and C. Park Fixed point theorems for improved $alpha$-Geraghty contractions in partial metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 4436-4449.

D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. (2012) Article ID 94.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Some Existence Results for a System of Nonlinear Fractional Differential Equations
Eskandar Ameer, Hassen Aydi, Hüseyin Işık, Muhammad Nazam, Vahid Parvaneh, Muhammad Arshad, Serkan Araci
Journal of Mathematics  vol: 2020  first page: 1  year: 2020  
doi: 10.1155/2020/4786053

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt