Transitions between 4-intersection values of planar regions
Submitted: 2016-10-13
|Accepted: 2017-01-25
|Published: 2017-04-03
Downloads
Keywords:
upper semicontinuous, lower semicontinuous, Vietoris topology, spatial region, 4-intersection value
Supporting agencies:
Abstract:
References:
C. Adams and R. Franzosa, Introduction to Topology: Pure and Applied, Pearson Prentice Hall, Upper Saddle River, NJ, 2008.
J. Chen, C. Li, Z. Li and C. Gold, A Voronoi-based 9-intersection model for spatial relations, International Journal for Geographical Information Science 15, no. 3 (2001), 201-220.
https://doi.org/10.1080/13658810151072831
E. Clementini, J. Sharma and M. Egenhofer, Modeling topological spatial relations: strategies for query processing, Computers and Graphics 18, no. 6 (1994), 815-822.
https://doi.org/10.1016/0097-8493(94)90007-8
M. Egenhofer and K. Al-Taha, Reasoning about gradual changes of topological relationships, in: A Frank, I. Campari, and U. Valueentini (Eds.), Theories and Models of Spatio-Temporal Reasoing in Geographic Space, Pisa, Italy, Lecture Notes in Computer Science, 639. New York: Springer-Veralg, 1992, pp. 196-219.
https://doi.org/10.1007/3-540-55966-3_12
M. Egenhofer, E. Clementini and P. di Felice, Topological relations between regions with holes, International Journal for Geographical Information Systems 8, no. 2 (1994), 129-144.
https://doi.org/10.1080/02693799408901990
M. Egenhofer and R. Franzosa, Point-set topological spatial relations, International Journal for Geographical Information Systems 5, no. 2 (1991) 161-174.
https://doi.org/10.1080/02693799108927841
M. Egenhofer and R. Franzosa, On equivalence of topological relations, International Journal for Geographical Information Systems 8, no. 6 (1994), 133-152.
S. Francaviglia, A. Lechicki and S. Levi, Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), 347-370.
https://doi.org/10.1016/0022-247X(85)90246-X
N. M. Gotts, An axiomatic approach to topology for spatial information systems, Research Report 96.25, University of Leeds, School of Computer Science, 1996.
E. Klein and A. C. Thompson, Theory of Correspondences: Including Applications to Economics. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley and Sons, New York, 1984.
Y. Kurata and M. Egenhofer, The e 9+-intersectionintersection for topological relations between a directed line segment and a region, in: Proceedings of the 1st Workshop on Behavioral Monitoring and Interpretation. TZI-Bericht, Technologie-Zentrum Informatik, Universität Bremen, Germany, Vol. 42, 2007, pp. 62-76.
D. Mark and M. Egenhofer, An evaluation of the 9-intersection for region-line relations, San Jose, CA: GIS/LIS '92, (1992) 513-521.
K. Nedas, M. Egenhofer and D. Wilmsen, Metric details of topological line-line relations, International Journal for Geographical Information Science 21, no. 1 (2007), 21-48.
https://doi.org/10.1080/13658810600852164
A. J. Roy and J. G. Stell, Indeterminate regions, Internat. J. Approximate Reasoning 27 (2001), 205-234.
https://doi.org/10.1016/S0888-613X(01)00033-0
T. Smith and K. Park, Algebraic approach to spatial reasoning, International Journal for Geographical Information Systems 6, no. 3 (1992), 177-192.
https://doi.org/10.1080/02693799208901904
J. Wu, C. Claramunt and M. Deng, Modelling movement patterns using topological relations between a directed line and a region, IWGS '14 Proceedings of the 5th ACM SGISPATIAL International Workshop on GeoStreaming. New York: ACM, 2014, 43-52.