Digital shy maps
DOI:
https://doi.org/10.4995/agt.2017.6663Keywords:
digital image, continuous multivalued function, shy map, isomorphism, Cartesian product, wedgeAbstract
We study properties of shy maps in digital topology.Downloads
References
C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.
L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839.
https://doi.org/10.1016/0167-8655(94)90012-4
L. Boxer, A classical construction for the digital fundamental group, Pattern Recognition Letters 10 (1999), 51-62.
L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision 22 (2005),19-26.
https://doi.org/10.1007/s10851-005-4780-y
L. Boxer, Digital products, wedges, and covering spaces, Journal of Mathematical Imaging and Vision 25 (2006), 159-171.
https://doi.org/10.1007/s10851-006-9698-5
L. Boxer, Remarks on digitally continuous multivalued functions, Journal of Advances in Mathematics 9, no. 1 (2014), 1755-1762.
L. Boxer, Generalized normal product adjacency in digital topology, submitted (available at https://arxiv.org/abs/1608.03204).
L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180.
L. Boxer and P. C. Staecker, Connectivity preserving multivalued functions in digital topology, Journal of Mathematical Imaging and Vision 55, no. 3 (2016), 370-377.
https://doi.org/10.1007/s10851-015-0625-5
C. Escribano, A. Giraldo and M. Sastre, Digitally continuous multivalued functions, in: Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 4992, Springer, 2008, 81-92.
https://doi.org/10.1007/978-3-540-79126-3_9
C. Escribano, A. Giraldo and M. Sastre, Digitally continuous multivalued functions, morphological operations and thinning algorithms, Journal of Mathematical Imaging and Vision 42 (2012), 76-91.
https://doi.org/10.1007/s10851-011-0277-z
A. Giraldo and M. Sastre, On the composition of digitally continuous multivalued functions, Journal of Mathematical Imaging and Vision 58 (2015), 196-209.
https://doi.org/10.1007/s10851-015-0570-3
S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91.
https://doi.org/10.1016/j.ins.2004.03.018
V. A. Kovalevsky, A new concept for digital geometry, shape in picture, Springer, New York (1994).
A. Rosenfeld, "Continuous" functions on digital images, Pattern Recognition Letters 4 (1987), 177-184.
https://doi.org/10.1016/0167-8655(86)90017-6
R. Tsaur and M. Smyth, Continuous multifunctions in discrete spaces with applications to fixed point theory, in: Digital and Image Geometry, Bertrand, G., Imiya, A., Klette, R. (eds.), Lecture Notes in Computer Science, vol. 2243, pp. 151-162, Springer, Berlin (2001).
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.