Digital shy maps

Laurence Boxer

Abstract

We study properties of shy maps in digital topology.

Keywords

digital image; continuous multivalued function; shy map; isomorphism; Cartesian product; wedge

Subject classification

54C99; 05C99.

Full Text:

PDF

References

C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.

L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839.

https://doi.org/10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, Pattern Recognition Letters 10 (1999), 51-62.

L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision 22 (2005),19-26.

https://doi.org/10.1007/s10851-005-4780-y

L. Boxer, Digital products, wedges, and covering spaces, Journal of Mathematical Imaging and Vision 25 (2006), 159-171.

https://doi.org/10.1007/s10851-006-9698-5

L. Boxer, Remarks on digitally continuous multivalued functions, Journal of Advances in Mathematics 9, no. 1 (2014), 1755-1762.

L. Boxer, Generalized normal product adjacency in digital topology, submitted (available at https://arxiv.org/abs/1608.03204).

L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180.

L. Boxer and P. C. Staecker, Connectivity preserving multivalued functions in digital topology, Journal of Mathematical Imaging and Vision 55, no. 3 (2016), 370-377.

https://doi.org/10.1007/s10851-015-0625-5

C. Escribano, A. Giraldo and M. Sastre, Digitally continuous multivalued functions, in: Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 4992, Springer, 2008, 81-92.

https://doi.org/10.1007/978-3-540-79126-3_9

C. Escribano, A. Giraldo and M. Sastre, Digitally continuous multivalued functions, morphological operations and thinning algorithms, Journal of Mathematical Imaging and Vision 42 (2012), 76-91.

https://doi.org/10.1007/s10851-011-0277-z

A. Giraldo and M. Sastre, On the composition of digitally continuous multivalued functions, Journal of Mathematical Imaging and Vision 58 (2015), 196-209.

https://doi.org/10.1007/s10851-015-0570-3

S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91.

https://doi.org/10.1016/j.ins.2004.03.018

V. A. Kovalevsky, A new concept for digital geometry, shape in picture, Springer, New York (1994).

A. Rosenfeld, "Continuous" functions on digital images, Pattern Recognition Letters 4 (1987), 177-184.

https://doi.org/10.1016/0167-8655(86)90017-6

R. Tsaur and M. Smyth, Continuous multifunctions in discrete spaces with applications to fixed point theory, in: Digital and Image Geometry, Bertrand, G., Imiya, A., Klette, R. (eds.), Lecture Notes in Computer Science, vol. 2243, pp. 151-162, Springer, Berlin (2001).

https://doi.org/10.1007/3-540-45576-0_5

Abstract Views

947
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Shy maps in topology
Laurence Boxer
Topology and its Applications  vol: 242  first page: 59  year: 2018  
doi: 10.1016/j.topol.2018.04.017



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt