A note on weakly pseudocompact locales

Themba Dube

South Africa

University of South Africa

Department of Mathematical Sciences
|

Accepted: 2017-01-06

|

Published: 2017-04-03

DOI: https://doi.org/10.4995/agt.2017.6644
Funding Data

Downloads

Keywords:

Frame, locale, sublocale, Gδ-sublocale, weakly pseudocompact, binary coproduct

Supporting agencies:

This research was not funded

Abstract:

We revisit weak pseudocompactness in pointfree topology, and show that a locale is weakly pseudocompact if and only if it is Gδ-dense in some compactification. This localic approach (in contrast with the earlier frame-theoretic one) enables us to show that finite localic products of locales whose non-void Gδ-sublocales are spatial inherit weak pseudocompactness from the factors. We also show that if a locale is weakly pseudocompact and its Gδ-sublocales are complemented then it is Baire.

Show more Show less

References:

R. N. Ball and J. Walters-Wayland, C- and C*-quotients in pointfree topology, Dissertationes Mathematicae (Rozprawy Mat.) vol. 412 (2002), 62 pp.

R. N. Ball and J. Walters-Wayland, Well-embedding and Gδ-density in a pointfree setting, Appl. Categ. Struct. 14 (2006), 351-355.

https://doi.org/10.1007/s10485-006-9027-6

B. Banaschewski and C. Gilmour, Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolinae 37 (1996), 579-589.

B. Banaschewski and C. Gilmour, Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9 (2001), 395-417.

https://doi.org/10.1023/A:1011225712426

B. Banaschewski, D. Holgate and M. Sioen, Some new characterizations of pointfree pseudocompactness, Quaest. Math. 36 (2013), 589-599.

https://doi.org/10.2989/16073606.2013.779985

B. Banaschewski and J. Vermeulen, On the completeness of localic groups, Comment. Math. Univ. Carolinae 40 (1999), 293-307.

T. Dube, Remote points and the like in pointfree topology, Acta Math. Hungar. 123 (2009), 203-222.

https://doi.org/10.1007/s10474-009-8083-4

T. Dube and M. M. Mugochi, Localic remote points revisited, Filomat 29 (2015), 111-120.

https://doi.org/10.2298/FIL1501111D

T. Dube, I. Naidoo and C. N. Ncube, Isocompactness in the category of locales, Appl. Categ. Struct. 22 (2014), 727-739.

https://doi.org/10.1007/s10485-013-9341-8

T. Dube and J. Walters-Wayland, Weakly pseudocompact frames, Appl. Categ. Struct. 16 (2008), 749-761.

https://doi.org/10.1007/s10485-007-9115-2

S. García-Ferreira and A. García-Maynez, On weakly-pseudocompact spaces, Houston J. Math. 20 (1994), 145-159.

J. Gutiérrez García and J. Picado, On the parallel between normality and extremal disconnectivity, J. Pure Appl. Algebra 218 (2014), 784-803.

https://doi.org/10.1016/j.jpaa.2013.10.002

J. R. Isbell, First steps in descriptive locale theory, Trans. Amer. Math. Soc. 327 (1991), 353-371.

https://doi.org/10.1090/S0002-9947-1991-1091230-6

J. R. Isbell, Some problems in descriptive locale theory, Can. Math. Conf. Proc. 13 (1992), 243-265.

S. B. Niefield and K. I. Rosenthal, Spatial sublocales and essential primes, Topology Appl. 26 (1987), 263-269.

https://doi.org/10.1016/0166-8641(87)90046-0

P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.

J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012.

https://doi.org/10.1007/978-3-0348-0154-6

T. Plewe, Higher order dissolutions and Boolean coreflections of locales, J. Pure Appl. Algebra 154 (2000), 273-293.

https://doi.org/10.1016/S0022-4049(99)00193-0

J. Walters-Wayland, Completeness and nearly fine uniform frames, PhD thesis, University Catholique de Louvain (1995).

Show more Show less