Some fixed point results for dualistic rational contractions
Submitted: 2016-06-11
|Accepted: 2016-08-28
|Published: 2016-10-03
Downloads
Keywords:
fixed point, dualistic partial metric, dualistic contraction of rational type
Supporting agencies:
Abstract:
References:
J. Harjani, B. López and K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstr. Appl. Anal. (2010), Art. ID 190701. https://doi.org/10.1155/2010/190701
H.Isik and D.Tukroglu, Some fixed point theorems in ordered partial metric spaces, Journal of Inequalities and Special Functions 4 (2013), 13-18. https://doi.org/10.1186/1687-1812-2013-51
S. G. Matthews, Partial Metric Topology, in proceedings of the $11^{t}h$ Summer Conference on General Topology and Applications, 728 (1995), 183-197, The New York Academy of Sciences. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
M. Nazam and M.Arshad, On a fixed point theorem with application to integral equations, International Journal of Analysis 2016 (2016) Article ID 9843207, 7 pages. https://doi.org/10.1155/2016/9843207
J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22, no. 3 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
S. Oltra and O.Valero, Banach's fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste 36 (2004),17-26.
S. J. O'Neill, Partial metric, valuations and domain theory, Annals of the New York Academy of Science, 806 (1996), 304-315. https://doi.org/10.1111/j.1749-6632.1996.tb49177.x
A. C. M. Ran and M. C. B. Reuring, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132, no. 5 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
O. Valero, On Banach fixed point theorems for partial metric spaces, Applied General Topology 6, no. 2 (2005), 229-240. https://doi.org/10.4995/agt.2005.1957