Oriented components and their separations

Authors

DOI:

https://doi.org/10.4995/agt.2017.5868

Keywords:

separation spaces, pre-proximities, generalized topological spaces.

Abstract

There is a tight connection between connectedness, connected components, and certain types of separation spaces. Recently, axiom systems for oriented connectedness were proposed leading to the notion of reaches. Here, we introduce production relations as a further generalization of connectivity spaces and reaches and derive associated systems of oriented components that generalize connected components in a natural manner. The main result is a characterization of generalized reaches in terms of equivalent separation spaces.

Downloads

Download data is not yet available.

Author Biography

Peter F. Stadler, Leipzig University

Department of Computer Science Full Professor

References

J. L. Andersen, C. Flamm, D. Merkle and P. F. Stadler, Generic strategies for chemical space exploration, Int. J. Comp. Biol. Drug Design 7 (2014), 225-258.

https://doi.org/10.1504/IJCBDD.2014.061649

G. Benkö, F. Centler, P. Dittrich, C. Flamm, B. M. R. Stadler and P. F. Stadler, A topological approach to chemical organizations, Alife 15 (2009), 71-88.

https://doi.org/10.1162/artl.2009.15.1.15105

G. Berry, The chemical abstract machine, Theor. Comp. Sci. 96 (1992), 217-248.

https://doi.org/10.1016/0304-3975(92)90185-I

R. Börger, Connectivity spaces and component categories, in: H. L. Bentley, H. Herrlich, M. Rajagopalan, H. Wolff (Eds.), Categorical topology, Vol. 5 of Sigma Ser. Pure Math., Heldermann, Berlin, 1983, pp. 71-89, Proceedings of the International Conference held at the University of Toledo, Ohio, U.S.A., August 1-5, 1983.

M. Changat and J. Mathew, Induced path transit function, monotone and {Peano} axioms, Discrete Math. 286 (2004), 185-194.

https://doi.org/10.1016/j.disc.2004.02.017

S. Dugowson, Les frontières dialectiques, Math. Social Sci. 177 (2007), 87-152.

https://doi.org/10.4000/msh.3908

M. Erné and R. Vainio, Connectivity in lattice-ordered spaces, Math. Nachr. 147 (1990), 13-28.

https://doi.org/10.1002/mana.19901470103

L. G. Fearnley, M. J. Davis, M. A. Ragan and L. K. Nielsen, Extracting reaction networks from databases - opening Pandora's box, Brief Bioinform. 15 (2014), 973-983.

https://doi.org/10.1093/bib/bbt058

C. Flamm, B. M. R. Stadler and P. F. Stadler, Saddles and barrier in landscapes of generalized search operators, in: C. R. Stephens, M. Toussaint, D. Whitley, P. F. Stadler (Eds.), Foundations of Genetic Algortithms IX, Vol. 4436 of Lecture Notes Comp. Sci., Springer, Berlin, Heidelberg, 2007, pp. 194-212, 9th International Workshop, FOGA 2007, Mexico City, Mexico, January 8-11, 2007.

https://doi.org/10.1007/978-3-540-73482-6_11

C. Flamm, B. M. R. Stadler and P. F. Stadler, Generalized topologies: hypergraphs, chemical reactions, and biological evolution, in: S. C. Basak, G. Restrepo, J. L. Villaveces (Eds.), Advances in Mathematical Chemistry: With applications to chemoinformatics, bioinformatics, drug discovery, and Predictive toxicology, Vol. 2, Bentham, Sharjah, UAE, 2013, pp. 300-327.

J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, 1975.

K. Klemm, J. Qin and P. F. Stadler, Geometry and coarse-grained representations of landscapes, in: A. Engelbrecht, H. Richter (Eds.), Recent advances in the theory and application of fitness landscapes, Vol. 6 of Emergence, Complexity, and Computation, Springer-Verlag, Berlin, 2014, pp. 153-176.

https://doi.org/10.1007/978-3-642-41888-4_6

S. Leader, Local proximity spaces, Math. Annalen 169 (1957), 275-281.

https://doi.org/10.1007/BF01362349

M. W. Lodato, On topologically induced generalized proximity relations, Proc. Amer. Math. Soc. 15 (1964), 417-422.

https://doi.org/10.1090/S0002-9939-1964-0161305-3

L. Mazo, N. Passat, M. Couprie and C. Ronse, Digital imaging: a unified topological framework, J. Math. Imaging Vision 44 (2012), 19-37.

https://doi.org/10.1007/s10851-011-0308-9

H. M. Mulder, The Interval Function of a Graph, Vol. 132 of Math. Centre Tracts, Math. Centre, Amsterdam, NL, 1980.

J. Muscat and D. Buhagiar, Connective spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Math. Sci. 39 (2006), 1-13.

W. J. Pervin, On separation and proximity spaces, Amer. Math. Monthly 71 (1964), 158-161.

https://doi.org/10.2307/2311745

I. Rechenberg, Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien des Biologischen Evolution, Frommann-Holzboog Verlag, Stuttgart, 1973.

C. Ronse, Set-theoretical algebraic approaches to connectivity in continuous or digital spaces, J. Math. Imaging Vision 8 (1998), 41-58.

https://doi.org/10.1023/A:1008210216583

C. Ronse, Partial partitions, partial connections and connective segmentation, J. Math. Imaging Vis. 32 (2008), 97-125.

https://doi.org/10.1007/s10851-008-0090-5

C. Ronse, Axiomatics for oriented connectivity, Pattern Recognition Lett. 47 (2014), 120-128.

https://doi.org/10.1016/j.patrec.2014.03.020

J. Serra, Mathematical morphology for boolean lattices, in: J. Serra (Ed.), Image Analysis and Mathematical Morphology, Theoretical Advances, Vol. 2, Academic Press, London, 1988, pp. 37-58.

J. M. Smirnov, On proximity spaces, Mat. Sb. 31 (1952), 543-574.

B. M. R. Stadler and P. F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comput. Sci. 42 (2002), 577-585.

https://doi.org/10.1021/ci0100898

B. M. R. Stadler and P. F. Stadler, Connectivity spaces, Math. Comp. Sci 9 (2015), 409-436.

https://doi.org/10.1007/s11786-015-0241-1

B. M. R. Stadler, P. F. Stadler, G. Wagner and W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change, J. Theor. Biol. 213 (2001), 241-274.

https://doi.org/10.1006/jtbi.2001.2423

O. Tankyevych, H. Talbot, N. Passat, Semi-connections and hierarchies, in: C. L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.), Mathematical Morphology and Its Applications to Signal and Image Processing, Vol. 7883 of Lect. Notes Comp. Sci., Springer, Berlin, 2013, pp. 159-170.

https://doi.org/10.1007/978-3-642-38294-9_14

A. D. Wallace, Separation spaces, Ann. Math. 42 (1941), 687-697.

https://doi.org/10.2307/1969257

S. Wright, The roles of mutation, inbreeding, crossbreeeding and selection in evolution, in: D. F. Jones (Ed.), Proceedings of the Sixth International Congress on Genetics, Vol. 1, 1932, pp. 356-366.

Downloads

Published

2017-10-02

How to Cite

[1]
B. M. R. Stadler and P. F. Stadler, “Oriented components and their separations”, Appl. Gen. Topol., vol. 18, no. 2, pp. 255–275, Oct. 2017.

Issue

Section

Regular Articles