On quasi-orbital space

Authors

  • Hawete Hattab Umm Al-Qura University

DOI:

https://doi.org/10.4995/agt.2017.4676

Keywords:

homeomorphism, group, quasi-orbit space, quasi-orbital space

Abstract

Let be a subgroup of the group Homeo(E) of homeomorphisms of a Hausdorff topological space E. The class of an orbit of G  is the union of all orbits having the same closure as O. We denote by E=eG  the space of classes of orbits called quasi-orbit space. A space X  is called a quasi-orbital space if it is homeomorphic to E=ewhere E  is a compact Hausdorff space. In this paper, we show that every in nite second countable quasi-compact T0-space is the quotient of a quasi-orbital space.

 

 

 

 

Downloads

Download data is not yet available.

Author Biography

Hawete Hattab, Umm Al-Qura University

Math department

References

C. Bonatti, H. Hattab and E. Salhi, Quasi-orbits spaces associated to $T_0$-spaces, Fund. Math. 211 (2011), 267-291. https://doi.org/10.4064/fm211-3-4

C. Bonatti, H. Hattab, E. Salhi and G. Vago, Hasse diagrams and orbit class spaces, Topology Appl. 158 (2011), 729-740. https://doi.org/10.1016/j.topol.2010.12.010

N. Bourbaki, Topologie générale chapitre 1 à 4, Masson, 1990.

J. Dugundji, Topology, Allyn and Bacon, Inc., Boston (1966).

R. Engelking, General Topology, 2nd ed., Helderman Verlag, Berlin, 1989.

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, AMS Colloquium Publications, Vol. 36, 1955. https://doi.org/10.1090/coll/036

H. Hattab, Characterization of quasi-orbit spaces, Qualitative theory of dynamical systems (2012). https://doi.org/10.1007/s12346-011-0066-5

H. Hattab and E. Salhi, Groups of homeomorphisms and spectral topology, Topology Proc. 28, no. 2 (2004), 503-526.

J. G. Hocking and G. S. Young, Topology, (1969).

J. L. Kelley, General Topology, Van Nostrand, New Work (1955).

N. Kopell, Commuting diffeomorphisms, Proc. Sympos. Pure Math. 14 (1970), 165-184. https://doi.org/10.1090/pspum/014/0270396

G. Reeb, Sur les structures feuilletées de codimension un et sur un théorème de A. Denjoy, Ann. Inst. Fourier 11 (1961), 185-200. https://doi.org/10.5802/aif.113

D. E. Miller, A selector for equivalence relations with $G_delta$ orbits, Proc. Amer. Math. Soc. 72, no. 2 (1978), 365-369. https://doi.org/10.2307/2042808

Downloads

Published

2017-04-03

How to Cite

[1]
H. Hattab, “On quasi-orbital space”, Appl. Gen. Topol., vol. 18, no. 1, pp. 53–59, Apr. 2017.

Issue

Section

Regular Articles