Fundamental groups and Euler characteristics of sphere-like digital images
Submitted: 2016-02-01
|Accepted: 2016-04-25
|Published: 2016-10-03
Downloads
Keywords:
digital topology, digital image, fundamental group, Euler characteristic
Supporting agencies:
Abstract:
References:
L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
L. Boxer, A classical construction for the digital fundamental group, Pattern Recognition Letters 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision 22 (2005), 19-26. https://doi.org/10.1007/s10851-005-4780-y
L. Boxer, Homotopy properties of sphere-like digital images, Journal of Mathematical Imaging and Vision 24 (2006), 167-175. https://doi.org/10.1007/s10851-005-3619-x
L. Boxer, Digital products, wedges and covering spaces, Journal of Mathematical Imaging and Vision 25 (2006), 159-171. https://doi.org/10.1007/s10851-006-9698-5
L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050
L. Boxer, I. Karaca and A. Oztel, Topological invariants in digital images, Journal of Mathematical Sciences: Advances and Applications 11, no. 2 (2011), 109-140.
L. Boxer and P. C. Staecker, Connectivity preserving multivalued functions in digital topology, Journal of Mathematical Imaging and Vision 55, no. 3 (2016), 370-377. https://doi.org/10.1007/s10851-015-0625-5
L. Boxer and P. C. Staecker, Remarks on pointed digital homotopy, submitted (http://arxiv.org/abs/1503.03016).
L. Boxer and P. C. Staecker, Homotopy relations for digital images, submitted (http://arxiv.org/abs/1509.06576).
L. Chen, Gradually varied surfaces and its optimal uniform approximation, SPIE Proceedings
L. Chen, Discrete surfaces and manifolds, Scientific Practical Computing, Rockville, MD, 2004 J. Haarman, M. P. Murphy, C. S. Peters and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-014-0551-y
S.-E. Han, Connected sum of digital closed surfaces, Information Sciences 176, no. 3 (2006), 332-348. https://doi.org/10.1016/j.ins.2004.11.003
S.-E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177 (2007), 3314-3326. https://doi.org/10.1016/j.ins.2006.12.013
S.-E. Han, Equivalent $(k_0,k_1)$-covering and generalized digital lifting, Information Sciences 178 (2008), 550-561. https://doi.org/10.1016/j.ins.2007.02.004
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, in Proceedings IEEE International Conference on Systems, Man, and Cybernetics, 1987, 227-234.
T. Y. Kong, A digital fundamental group, Computers and Graphics 13 (1989), 159-166. https://doi.org/10.1016/0097-8493(89)90058-7
T. Y. Kong and A. Rosenfeld, eds., Topological algorithms for digital image processing, Elsevier, 1996.
A. Rosenfeld, Digital topology, American Mathematical Monthly 86 (1979), 621-630. https://doi.org/10.1080/00029890.1979.11994873
A. Rosenfeld, 'Continuous' functions on digital images, Pattern Recognition Letters 4 (1987), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
Q. F. Stout, Topological matching, Proceedings 15th Annual Symposium on Theory of Computing, 1983, 24-31. https://doi.org/10.1145/800061.808729