Normally preordered spaces and continuous multi-utilities
Submitted: 2016-01-18
|Accepted: 2016-03-16
|Published: 2016-04-12
Downloads
Keywords:
normally preordered space, perfectly normally preordered space, multi-utility representation
Supporting agencies:
Abstract:
We study regular, normal and perfectly normal preorders by referring to suitable assumptions concerning the preorder and the topology of the space. We also present conditions for the existence of a countable continuous multi-utility representation, hence a Richter-Peleg multi-utility representation, by assuming the existence of a countable net weight.
References:
J. C. R. Alcantud, G. Bosi and M. Zuanon, Richter-Peleg multi-utility representations of preorders, Theory and Decision 80 (2016), 443-450. https://doi.org/10.1007/s11238-015-9506-z
J. C. R. Alcantud, G. Bosi, M. J. Campión, J. C. Candeal, E. Induráin and C. Rodríguez-Palmero, Continuous utility functions through scales, Theory and Decision 64 (2008), 479-494. https://doi.org/10.1007/s11238-007-9025-7
G. Bosi, A. Caterino and R. Ceppitelli, Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions, Tatra Mountains Math. Publ. 46 (2010), 15-27.
G. Bosi and G. Herden, Continuous multi-utility representations of preorders, Journal of Mathematical Economics 48 (2012), 212-218. https://doi.org/10.1016/j.jmateco.2012.05.001
G. Bosi and G. Herden, On continuous multi-utility representations of semi-closed and closed preorders, Mathematical Social Sciences 79 (2016), 20-29. https://doi.org/10.1016/j.mathsocsci.2015.10.006
G. Bosi and R. Isler, Separation axioms in topological preordered spaces and the existence of continuous order-preserving functions, Applied General Topology 1 (2000), 93-98. https://doi.org/10.4995/agt.2000.3026
G. Bosi and G. B. Mehta, Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof, Journal of Mathematical Economics 38 (2002), 311-328. https://doi.org/10.1016/S0304-4068(02)00058-7
D. S. Bridges and G. B. Mehta, Representations of Preference Orderings, Springer-Verlag, Berlin, 1995. https://doi.org/10.1007/978-3-642-51495-1
D. Carfí, A. Caterino and R. Ceppitelli, State preference models and jointly continuous utilities, Proceedings of 15-th International Conference on Applied Mathematics, Aplimat 2016, Bratislava, Slovakia (2016), 163-176.
A. Caterino and R. Ceppitelli, Jointly continuous utility functions on submetrizable k$_omega$-spaces, Topology and its Applications 190 (2015) 109-118. https://doi.org/10.1016/j.topol.2015.04.012
A. Caterino, R. Ceppitelli and L. Holá, Some generalizations of Back's Theorem, Topology and its Applications 160 (2013), 2386-2395. https://doi.org/10.1016/j.topol.2013.07.033
A. Caterino, R. Ceppitelli and F. Maccarino, Continuous utility functions on submetrizable hemicompact k-spaces, Applied General Topology 10 (2009), 187-195. https://doi.org/10.4995/agt.2009.1732
R. Engelking, General Topology, Berlin:Heldermann, 1989.
O. Evren and E. A. Ok, On the multi-utility representation of preference relations, Journal of Mathematical Economics 47 (2011), 554-563. https://doi.org/10.1016/j.jmateco.2011.07.003
H.-P. A. Künzi, Completely regular ordered spaces, Order 7 (1990), 283-293. https://doi.org/10.1007/BF00418656
V. L. Levin, Functionally closed preorders and strong stochastic dominance, Soviet Math. Doklady 32 (1985), 22-26.
E. Minguzzi, Normally preordered spaces and utilities, Order 30 (2013), 137-150. https://doi.org/10.1007/s11083-011-9230-4
L. Nachbin, Topology and order, Van Nostrand, Princeton, 1965.