On topological groups with remainder of character k
Abstract
In [A.V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Top. Proc. 42 (2013), 157-163] it is proved that the character of a non-locally compact topological group with a first countable remainder doesn't exceed $\omega_1$ and a non-locally compact topological group of character $\omega_1$ having a compactification whose reminder is first countable is given. We generalize these results in the general case of an arbitrary infinite cardinal k.
Keywords
References
A. V. Arhangel'skii, Construction and classification of topological spaces and cardinal invariants, Uspehi Mat. Nauk. 33, no. 6 (1978), 29-84.
A.V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Doklady Acad. Nauk SSSR 187 (1969), 967-970.
A.V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013), 157-163.
R. Engelking, General Topology, Heldermann Verlag, Berlin, second ed., 1989.
I. Juhász, Cardinal functions in topology--ten years later, Mathematical Centre Tract, vol. 123, Mathematical Centre, Amsterdam, 1980.
Abstract Views
Metrics powered by PLOS ALM
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Universitat Politècnica de València e-ISSN: 1989-4147 https://doi.org/10.4995/agt |