On monotonic bijections on subgroups of R
DOI:
https://doi.org/10.4995/agt.2016.4116Keywords:
ordered group, topological group, homeomorphism, shift, monotonic function, fixed point, periodic pointAbstract
We show that for any continuous monotonic bijection $f$ on a $\sigma$-compact subgroup $G\subset \mathbb R$ there exists a binary operation $+_f$ such that $\langle G, +_f\rangle$ is a topological group topologically isomorphic to $\langle G, +\rangle$ and $f$ is a shift with respect to $+_f$. We then show that monotonicity cannot be replaced by a periodic-point free continuous bijections. We explore a few routes leading to generalizations and counterexamplesDownloads
References
P. Alexandroff and P. Urysohn, Uber nuldimensionale Punktmengen, Math Ann. 98 (1928), 89-106. https://doi.org/10.1007/BF01451582
R. Engelking, General Topology, PWN, Warszawa, 1977.
C. Nicolas, private communication, 2009
W. Sierpinski, Sur une propriete topologique des ensembles denombrablesdense en soi, Fund. Math. 1 (1920), 11-16. https://doi.org/10.4064/fm-1-1-11-16
J. van Mill, The Infinite-Dimensional Topology of Function Spaces, Elsevier, 2001
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.