A note on unibasic spaces and transitive quasi-proximities
Abstract
In this paper we prove there is a bijection between the set of all annular bases of a topological spaces $(X,\tau)$ and the set of all transitive quasi-proximities on $X$ inducing $\tau$.
We establish some properties of those topological spaces $(X,\tau)$ which imply that $\tau$ is the only annular basis
Keywords
Subject classification
References
P. Fletcher and W. Lindgren, Quasi-uniformity spaces, vol 77, Marcel Dekker, Inc., New York, First edition, 1982.
J. Ferrer, On topological spaces with a unique quasi-proximity, Quaest. Math 17 (1994), 479-486.
https://doi.org/10.1080/16073606.1994.9631779
H.-P. Künzi, Nontransitive quasi-uniformities in the Pervin quasi-proximity class, Proc. Amer. Math. Soc. 130 (2002), 3725-3730.
https://doi.org/10.1090/S0002-9939-02-06477-8
H.-P. Künzi, Quasi-uniform spaces-eleven years later, Topology Proceedings 18 (1993), 143-171.
H.-P. Künzi, Topological spaces with a unique compatible quasi-proximity, Arch. Math. 43 (1984), 559-561.
https://doi.org/10.1007/BF01190960
H.-P. Künzi and M. J. Pérez-Peñalver, The number of compatible totally bounded quasi-uniformities, Act. Math. Hung. 88 (2000), 15-23.
https://doi.org/10.1023/A:1006788124139
H.-P. Künzi and S. Watson, A nontrivial $T_1$-spaces admitting a unique quasi-proximity, Glasg. Math. J. 38 (1996), 207-213.
https://doi.org/10.1017/S0017089500031451
W. J. Pervin. Quasi-uniformization of topological spaces, Math. Annalen 147 (1962), 116-117.
https://doi.org/10.1007/BF01440953
W. J. Pervin, Quasi-proximities for topological spaces, Math. Annalen 150 (1963), 325-326.
https://doi.org/10.1007/BF01470761
Abstract Views
Metrics powered by PLOS ALM
Cited-By (articles included in Crossref)
This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site
1. Completion of pre-quasi-uniform spaces
Adalberto García-Máynez, Adolfo Pimienta Acosta
Topology and its Applications vol: 221 first page: 491 year: 2017
doi: 10.1016/j.topol.2017.02.025
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Universitat Politècnica de València e-ISSN: 1989-4147 https://doi.org/10.4995/agt |