The dynamical look at the subsets of a group

Igor V. Protasov, Sergii Slobodianiuk

Abstract

We consider the action of a group $G$ on the family $\mathcal{P}(G)$ of all subsets of $G$ by the right shifts $A\mapsto Ag$ and give the dynamical characterizations of thin, $n$-thin, sparse and scattered subsets.

For $n\in\mathbb{N}$, a subset $A$ of a group $G$ is called $n$-thin if $g_0A\cap\dots\cap g_nA$ is finite for all distinct $g_0,\dots,g_n\in G$.
Each $n$-thin subset of a group of cardinality $\aleph_0$ can be partitioned into $n$ $1$-thin subsets but there is a $2$-thin subset in some Abelian group of cardinality $\aleph_2$ which cannot be partitioned into two $1$-thin subsets. We eliminate the gap between $\aleph_0$ and $\aleph_2$ proving that each $n$-thin subset of an Abelian group of cardinality $\aleph_1$ can be partitioned into $n$ $1$-thin subsets.


Keywords

Thin; sparse and scatterad subsets of a group; recurrent point; chromatic number of a graph.

Subject classification

54H20; 05C15.

Full Text:

PDF

References

T. Banakh, I. V. Protasov and S. Slobodianiuk, Scattered subsets of groups, Ukr. Math J. 67 (2015), 304-312, preprint (http://arxiv.org/abs/1312.6946).

T. Carlson, N. Hindman, J. McLeod and D. Strauss, Almost disjoint large subsets of a semigroups, Topology Appl. 155 (2008), 433-444.

http://dx.doi.org/10.1016/j.topol.2005.05.012

C. Chou, On the size of the set of left invariant means on a group, Proc. Amer. Math. Soc. 23 (1969), 199-205.

http://dx.doi.org/10.1090/s0002-9939-1969-0247444-1

M. Filali, Ie. Lutsenko and I. V. Protasov, Boolean group ideals and the ideal structure of $beta G$, Math. Stud. 31 (2009), 19-28.

H. Furstenberg, Poincare recurrence and number theory, Bull. Amer. Math. Soc. 5, no. 3 (1981), 211-234.

http://dx.doi.org/10.1090/S0273-0979-1981-14932-6

P. Hall, On representations of subsets, J. London Math. Soc. 10 (1935), 26-30.

N. Hindman, Ultrafilters and combinatorial number theory, Lecture Notes in Math. 571 (1979), 119-184.

http://dx.doi.org/10.1007/BFb0062706

N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification, de Gruyter, Berlin, New York, 1998.

http://dx.doi.org/10.1515/9783110809220

Ie. Lutsenko and I. V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation 19 (2009), 491-510.

http://dx.doi.org/10.1142/S0218196709005135

Ie. Lutsenko and I. V. Protasov, Thin subsets of balleans, Appl. Gen. Topology 11 (2010), 89-93.

http://dx.doi.org/10.4995/agt.2010.1710

V. I. Malykhin and I. V. Protasov, Maximal resolvability of bounded groups, Topology Appl. 20 (1996), 1-6.

http://dx.doi.org/10.1016/s0166-8641(96)00020-x

I. V. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull. 7 (2010), 220-257.

I. V. Protasov, Partitions of groups into thin subsets, Algebra Discrete Math. 11 (2011), 88-92.

I. V. Protasov, Partitions of groups into sparse subsets, Algebra Discrete Math. 13 (2012), 107-110.

I. V. Protasov and S. Slobodianiuk, Thin subsets of groups, Ukr. Math. J. 65 (2013), 1245-1253.

I. V. Protasov and S. Slobodianiuk, On the subset combinatorics of $G$-spaces, Algebra Discrete Math. 17 (2014), 98-109.

Abstract Views

1206
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt