Baire property in product spaces

Constancio Hernández, Leonardo Rodríguez Medina, Mikhail Tkachenko

Abstract

We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire.

Keywords

Baire space; strongly Baire space; skeletal mapping; Banach-Mazur-Choquet game; paratopological group; semitopological group.

Subject classification

54H11; 54E52.

Full Text:

PDF

References

J. M. Aarts and D. J. Lutzer, Pseudo-completeness and the product of Baire spaces, Pacific J. Math. 48 (1973), 1-10.(http://dx.doi.org/10.2140/pjm.1973.48.1)

O.T. Alas and M. Sanchis, Countably compact paratopological groups, Semigroup Forum 74, no. 3 (2007), 423-438.(http://dx.doi.org/10.1007/s00233-006-0637-y)

A. V. Arhangel'skii and E. A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107-119.(http://dx.doi.org/10.1016/j.topol.2003.08.035)

T. Banakh and O.Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), pp. 140-152.

N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966.

A. Bouziad, Every Cech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124, no. 3 (1996), 953-959. (http://dx.doi.org/10.1090/S0002-9939-96-03384-9)

M. Bruguera and M. Tkachenko, Pontryagin duality in the class of precompact Abelian groups and the Baire property, J. Pure Appl. Algebra 216, no. 12 (2012), 2636-2647.(http://dx.doi.org/10.1016/j.jpaa.2012.03.035)

J. Chaber and R. Pol, On hereditarily Baire spaces, $sigma$-fragmentability of mappings and Namioka property, Topology Appl. 151, no. 1-3 (2005), 132-143.(http://dx.doi.org/10.1016/j.topol.2004.04.011)

P.E. Cohen, Products of Baire spaces, Proc. Amer. Math. Soc. 55 (1976), 119-124.(http://dx.doi.org/10.1090/S0002-9939-1976-0401480-4)

W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1996), 483-496. (http://dx.doi.org/10.2140/pjm.1966.16.483)

W.Fleissner and K.Kunen, Barely Baire spaces, Fund. Math. 101, no. 3 (1978), 229-240.

Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J. 11, no. 86 (1961), 237-248.

Z. Frolík, Concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11, no. 3 (1961), 381-385.

R. E. Hodel, Moore spaces and $wDelta $-spaces, Pacific J. Math. 38 (1971), 641-652.(http://dx.doi.org/10.2140/pjm.1971.38.641)

P. S. Kenderov, I. S. Kortezov and W. B. Moors, Topological games and topological groups, Topology Appl. 109, no. 2 (2001), 157-165. (http://dx.doi.org/10.1016/S0166-8641(99)00152-2)

J.van Mill and R. Pol, The Baire category theorem in products of linear spaces and topological groups, Topolology Appl. 22, no. 3 (1986), 267-282. (http://dx.doi.org/10.1016/0166-8641(86)90025-8)

W. B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire, Proc. Amer. Math. Soc. 134, no. 7 (2006), 2161-2163. (http://dx.doi.org/10.1090/S0002-9939-06-08389-4)

J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/1961), 157-166.

Z. Piotrowski, Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116.

A. Ravsky, The topological and algebraic properties of paratopological groups, Ph.D. Thesis, Lviv University, 2003.

A. Ravsky, Pseudocompact paratopological groups that are topological, ArXiv e-prints, arXiv:1003.5343 [math.GR], April 2012.

M. Sanchis and M. Tkachenko, Feebly compact paratopological groups and real-valued functions, Monatsh. Math. 168, no. 3-4 (2012), 579-597. (http://dx.doi.org/10.1007/s00605-012-0444-3)

M. Tkachenko, Some results on inverse spectra. II, Comment. Math. Univ. Carolin. 22, no. 4 (1981), 819-841.

M. Tkachenko, Group reflection and precompact paratopological groups, Topol. Algebra Appl. 1 (2013), 22-30.

V. V. Tkachuk, The spaces $C_p(x)$: decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl. 22 (1986), 241-253. (http://dx.doi.org/10.1016/0166-8641(86)90023-4)

M. Valdivia, Products of Baire topological vector spaces, Fund. Math. 125, no. 1, 71-80.

V. Valov, External characterization of I-fa-vora-ble spaces, arXiv:1005.0074 [math.GR], 2010.

E. K. van Douwen, An unbaireable stratifiable space, Proc. Amer. Math. Soc. 67, no. 2 (1977), 324-326.(http://dx.doi.org/10.1090/S0002-9939-1977-0474220-1)

H. E. White, Jr., Topological spaces that are $alpha$-favorable for a player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477-482.

Abstract Views

3749
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Reflecting some properties of topological groups
Constancio Hernández, Mikhail Tkachenko
Topology and its Applications  vol: 221  first page: 501  year: 2017  
doi: 10.1016/j.topol.2017.02.028

2. Joint Continuity of Separately Continuous Mappings with Values in Completely Regular Spaces
Volodymyr Maslyuchenko, Oksana Myronyk, Olha Filipchuk
Tatra Mountains Mathematical Publications  vol: 68  issue: 1  first page: 47  year: 2017  
doi: 10.1515/tmmp-2017-0004



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt