Best proximity points of contractive mappings on a metric space with a graph and applications
Submitted: 2014-11-25
|Accepted: 2016-11-11
|Published: 2017-04-03
Downloads
Keywords:
Fixed point, best proximity point, contraction, graph, metric space, P-property.
Supporting agencies:
University Grants Commission
New Delhi
Abstract:
References:
T. Dinevari and M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl. 405 (2013), 507-517.
https://doi.org/10.1016/j.jmaa.2013.04.014
M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10.
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 122 (1969), 234-240.
https://doi.org/10.1007/BF01110225
J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.
https://doi.org/10.1090/S0002-9939-07-09110-1
W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), 433-446.
https://doi.org/10.1016/j.jmaa.2005.04.053
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal. TMA 68 (2008), 2216-2227.
https://doi.org/10.1016/j.na.2007.01.057
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
https://doi.org/10.1081/NFA-120026380
L. Máté, The Hutchinson-Barnsley theory for certain non-contraction mappings, Period. Math. Hungar. 27 (1993), 21-33.
https://doi.org/10.1007/BF01877158
J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
https://doi.org/10.1007/s11083-005-9018-5
V. Pragadeeswarar and M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett. 7 (2013), 1883-1892.
https://doi.org/10.1007/s11590-012-0529-x
V. Sankar Raj, Best proximity point theorems for non-self mappings, Fixed Point Theory 14 (2013), 447-454.
A. C. M. Ran and M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
https://doi.org/10.1090/S0002-9939-03-07220-4
A. Sultana and V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl. 417 (2014), 336-344.
https://doi.org/10.1016/j.jmaa.2014.03.015
A. Sultana and V. Vetrivel, On the existence of best proximity points for generalized contractions, Appl. Gen. Topol. 15 (2014), 55-63.