Best proximity points of contractive mappings on a metric space with a graph and applications

Authors

  • Asrifa Sultana Indian Institute of Technology Madras
  • V. Vetrivel Indian Institute of Technology Madras

DOI:

https://doi.org/10.4995/agt.2017.3424

Keywords:

Fixed point, best proximity point, contraction, graph, metric space, P-property.

Abstract

We establish an existence and uniqueness theorem on best proximity point for contractive mappings on a metric space endowed with a graph. As an application of this theorem, we obtain a result on the existence of unique best proximity point for uniformly locally contractive mappings. Moreover, our theorem subsumes and generalizes many recent  fixed point and best proximity point results.

Downloads

Download data is not yet available.

Author Biographies

Asrifa Sultana, Indian Institute of Technology Madras

Mathematics

V. Vetrivel, Indian Institute of Technology Madras

Mathematics

References

T. Dinevari and M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl. 405 (2013), 507-517.

https://doi.org/10.1016/j.jmaa.2013.04.014

M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10.

K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 122 (1969), 234-240.

https://doi.org/10.1007/BF01110225

J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.

https://doi.org/10.1090/S0002-9939-07-09110-1

W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), 433-446.

https://doi.org/10.1016/j.jmaa.2005.04.053

W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal. TMA 68 (2008), 2216-2227.

https://doi.org/10.1016/j.na.2007.01.057

W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.

https://doi.org/10.1081/NFA-120026380

L. Máté, The Hutchinson-Barnsley theory for certain non-contraction mappings, Period. Math. Hungar. 27 (1993), 21-33.

https://doi.org/10.1007/BF01877158

J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.

https://doi.org/10.1007/s11083-005-9018-5

V. Pragadeeswarar and M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett. 7 (2013), 1883-1892.

https://doi.org/10.1007/s11590-012-0529-x

V. Sankar Raj, Best proximity point theorems for non-self mappings, Fixed Point Theory 14 (2013), 447-454.

A. C. M. Ran and M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.

https://doi.org/10.1090/S0002-9939-03-07220-4

A. Sultana and V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl. 417 (2014), 336-344.

https://doi.org/10.1016/j.jmaa.2014.03.015

A. Sultana and V. Vetrivel, On the existence of best proximity points for generalized contractions, Appl. Gen. Topol. 15 (2014), 55-63.

https://doi.org/10.4995/agt.2014.2221

Downloads

Published

2017-04-03

How to Cite

[1]
A. Sultana and V. Vetrivel, “Best proximity points of contractive mappings on a metric space with a graph and applications”, Appl. Gen. Topol., vol. 18, no. 1, pp. 13–21, Apr. 2017.

Issue

Section

Regular Articles