Rational criterion testing the density of additive subgroups of R^n and C^n

Mohamed Elghaoui, Adlene Ayadi

Abstract

In this paper, we give an explicit criterion to decide the
density of finitely generated additive subgroups of R^n and C^n.


Keywords

dense; additive group; rationally independent; Kronecker.

Subject classification

47A06; 47A99.

Full Text:

PDF

References

A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, $mathbb{C$), Foliations 2005, World Scientific, Hackensack, NJ, (2006), 47-69.

A. Ayadi, H. Marzougui and E. Salhi, Hypercyclic abelian subgroups of GL(n, $mathbb{R)$, J. Difference Equ. Appl. 18 (2012), 721-738.

http://dx.doi.org/10.1080/10236198.2011.582466

A. Ayadi, Hypercyclic abelian groups of affine maps on $mathbb{C}^{n}$, Canad. Math. Bull. 56 (2013), 477-490.

http://dx.doi.org/10.4153/CMB-2012-019-6

N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82-98.

http://dx.doi.org/10.1016/j.jmaa.2008.04.027

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, Oxford, 1960.

L. Kronecker, Nherungsweise ganzzahlige Auflsung linearer Gleichungen, Monatsberichte Knigl. Preu. Akad. Wiss. Berlin, (1884), 1179-1193 and 1271-1299.

M. Waldschmidt,Topologie des points rationnels, Cours de troisi`eme Cycle, Universit'e P. et M. Curie (Paris VI), (1994/95).

Abstract Views

1188
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt