Rational criterion testing the density of additive subgroups of R^n and C^n

Mohamed Elghaoui

Tunisia

University of Carthage

Faculty of Sciences of Bizerte 7021 Jarzouna, Bizerte

Department of Mathematics

Adlene Ayadi

Tunisia

University of Gafsa

Faculty of sciences

|

Accepted: 2015-07-27

|

Published: 2015-10-01

DOI: https://doi.org/10.4995/agt.2015.3257
Funding Data

Downloads

Keywords:

dense, additive group, rationally independent, Kronecker.

Supporting agencies:

This research was not funded

Abstract:

In this paper, we give an explicit criterion to decide the
density of finitely generated additive subgroups of R^n and C^n.

Show more Show less

References:

A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, $mathbb{C$), Foliations 2005, World Scientific, Hackensack, NJ, (2006), 47-69.

A. Ayadi, H. Marzougui and E. Salhi, Hypercyclic abelian subgroups of GL(n, $mathbb{R)$, J. Difference Equ. Appl. 18 (2012), 721-738.

http://dx.doi.org/10.1080/10236198.2011.582466

A. Ayadi, Hypercyclic abelian groups of affine maps on $mathbb{C}^{n}$, Canad. Math. Bull. 56 (2013), 477-490.

http://dx.doi.org/10.4153/CMB-2012-019-6

N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82-98.

http://dx.doi.org/10.1016/j.jmaa.2008.04.027

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, Oxford, 1960.

L. Kronecker, Nherungsweise ganzzahlige Auflsung linearer Gleichungen, Monatsberichte Knigl. Preu. Akad. Wiss. Berlin, (1884), 1179-1193 and 1271-1299.

M. Waldschmidt,Topologie des points rationnels, Cours de troisi`eme Cycle, Universit'e P. et M. Curie (Paris VI), (1994/95).

Show more Show less