Rational criterion testing the density of additive subgroups of R^n and C^n
DOI:
https://doi.org/10.4995/agt.2015.3257Keywords:
dense, additive group, rationally independent, Kronecker.Abstract
In this paper, we give an explicit criterion to decide the
density of finitely generated additive subgroups of R^n and C^n.
Downloads
References
A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, $mathbb{C$), Foliations 2005, World Scientific, Hackensack, NJ, (2006), 47-69.
A. Ayadi, H. Marzougui and E. Salhi, Hypercyclic abelian subgroups of GL(n, $mathbb{R)$, J. Difference Equ. Appl. 18 (2012), 721-738.
http://dx.doi.org/10.1080/10236198.2011.582466
A. Ayadi, Hypercyclic abelian groups of affine maps on $mathbb{C}^{n}$, Canad. Math. Bull. 56 (2013), 477-490.
http://dx.doi.org/10.4153/CMB-2012-019-6
N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82-98.
http://dx.doi.org/10.1016/j.jmaa.2008.04.027
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, Oxford, 1960.
L. Kronecker, Nherungsweise ganzzahlige Auflsung linearer Gleichungen, Monatsberichte Knigl. Preu. Akad. Wiss. Berlin, (1884), 1179-1193 and 1271-1299.
M. Waldschmidt,Topologie des points rationnels, Cours de troisi`eme Cycle, Universit'e P. et M. Curie (Paris VI), (1994/95).
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.