When is a space Menger at infinity?
DOI:
https://doi.org/10.4995/agt.2015.3244Keywords:
Menger, remainderAbstract
We try to characterize those Tychonoff spaces X such that βX\X has the Menger property.
Downloads
References
L. F. Aurichi and A. Bella, On a game theoretic cardinality bound, Topology Appl., to appear.
G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206. https://doi.org/10.4064/fm-129-3-199-206
M. Henriksen and J. Isbell, Some properties of compactifications., Duke Math. J. 25 (1958), 83-106. https://doi.org/10.1215/S0012-7094-58-02509-2
W. Hurewicz, Uber eine verallgemeinerung des Borelschen theorems, Mathematische Zeitschrift. 24 (1925), 401-421. https://doi.org/10.1007/BF01216792
E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733. https://doi.org/10.1215/ijm/1256049022
A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33. https://doi.org/10.4064/fm-129-1-17-33
M. Sakai and M. Scheepers, The combinatorics of open covers, Recent progress in General Topology III, J. van Mill and K. P. Hart ed., (2014) 751-799. https://doi.org/10.2991/978-94-6239-024-9_18
R. Telgarsky, On games of Topsoe, Math. Scand. 54 (1984), 170-176. https://doi.org/10.7146/math.scand.a-12050
F. Topsoe, Topological games and Cech-completeness, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613-630.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.