F-nodec spaces

Authors

  • Lobna Dridi University of Tunis
  • Abdelwaheb Mhemdi Higher Institute of applied sciences and technologies of Gafsa
  • Tarek Turki University Tunis-El Manar

DOI:

https://doi.org/10.4995/agt.2015.3141

Keywords:

Categories, functors, Nodec spaces, primal Space.

Abstract

Following Van Douwen, a topological space is said to be nodec if it satises one of the following equivalent conditions:
(i) every nowhere dense subset of X, is closed;
(ii) every nowhere dense subset of X, is closed discrete;
(iii) every subset containing a dense open subset is open.
This paper deals with a characterization of topological spaces X such that F(X) is a nodec space for some covariant functor F from the category Top to itself. T0, and FH functors are completely studied.
Secondly, we characterize maps f given by a ow (X; f) in the category Set such that (X; P(f)) is nodec (resp., T0-nodec), where P(f) is a topology on X whose closed sets are precisely f-invariant sets.

Downloads

Download data is not yet available.

Author Biography

Lobna Dridi, University of Tunis

PREPARATORY ENGINEERING INSTITUTE. DEPARTEMENT OF MATHEMATICS

References

K. Belaid and L. Dridi, I-spaces, nodec spaces and compactifications, Topology Appl. 161 (2014), 196-205. (http://dx.doi.org/10.1016/j.topol.2013.10.021)

K. Belaid, O. Echi and S. Lazaar, $T_{(alpha , beta )$-spaces and the Wallman compactification, Int. J. Math. Math. Sc. 68 (2004), 3717-3735. (http://dx.doi.org/10.1155/S0161171204404050)

O. Echi and S. Lazaar, Reflective subcategories, Tychonoff spaces, and spectral spaces, Top. Proc. 34 (2009), 307-319.

A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique I: le langage des schemas, Inst. Hautes Etudes Sci. Publ. Math. no. 4, 1960.

J. F. Kennisson, The cyclic spectrum of a boolean flow, Theory Appl. Categ. 10 (2002), 392-409.

J. F. Kennisson, Spectra of finitely generated boolean flows, Theory Appl. Categ. 16 (2006), 434-459.

J. W. Tukey, Convergence and uniformity in topology, Annals of Mathematics Studies, no. 2. Princeton University Press, (1940) Princeton, N. J.

R. C. Walker, The Stone-Cech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. New York-Berlin: Springer-Verlag, (1974).

E. Hewitt, A problem of a set theoretic topology, Duke Mat. J. 10 (1943), 309-333. (http://dx.doi.org/10.1215/S0012-7094-43-01029-4)

A. V. Arhangel'skii and P. J. Collins, On submaximal spaces, Topology Appl. 64 (1995), 219-241. (http://dx.doi.org/10.1016/0166-8641(94)00093-I)

E. K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), 125-240. (http://dx.doi.org/10.1016/0166-8641(93)90145-4)

O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970. (http://dx.doi.org/10.2140/pjm.1965.15.961)

G. Bezhanishvili, L. Esakia and D. Gabelaia, Modal Logics of submaximal and nodec spaces, collection of Essays Dedicated to Dick De Jongh on occasion of his 65th. Birthday, J. van Benthem, F. Veltman, A. Troelstra, A. Visser, editors. (2004), pp. 1-13.

L. Dridi, S. Lazaar and T. Turki, F-Door Spaces and F-Submaximal Spaces, Appl. Gen. Topol. 14, no. 1 (2013), 97-113. (http://dx.doi.org/10.4995/agt.2013.1621)

S. Lazaar, On functionally Hausdorff Spaces, Missouri J. Math. Sci. 1 (2013), 88-97.

Downloads

Published

2015-03-23

How to Cite

[1]
L. Dridi, A. Mhemdi, and T. Turki, “F-nodec spaces”, Appl. Gen. Topol., vol. 16, no. 1, pp. 53–64, Mar. 2015.

Issue

Section

Articles