Primal spaces and quasihomeomorphisms

Authors

  • Afef Haouati University Tunis-El Manar
  • Sami Lazaar University Tunis-El Manar

DOI:

https://doi.org/10.4995/agt.2015.3045

Keywords:

Quasihomeomorphism, principal space, sober space

Abstract

In [3], the author has introduced the notion of primal spaces.
The present paper is devoted to shedding some light on relations between quasihomeomorphisms and primal spaces.

Given a quasihomeomorphism q from X to Y , where X and Y are principal spaces, we are concerned specically with a main problem: what additional conditions have to be imposed on q in order to render X (resp.Y ) primal when Y (resp.X) is primal.

Downloads

Download data is not yet available.

Author Biographies

Afef Haouati, University Tunis-El Manar

Department of Mathematics, Faculty of Sciences of Tunis

Sami Lazaar, University Tunis-El Manar

Department of Mathematics, Faculty of Sciences of Tunis

References

K. Belaid, O. Echi and S. Lazaar, $T_{(alpha , beta )$-spaces and the Wallman Compactification, Int. J. Math. Math. Sc. 68 (2004), 3717-3735. https://doi.org/10.1155/S0161171204404050

O. Echi, Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) (2003), 489-507.

O. Echi,The category of flows of Set and Top, Topology Appl. 159 (2012), 2357-2366. https://doi.org/10.1016/j.topol.2011.11.059

J. F. Kennisson, The cyclic spectrum of a Boolean flow, Theory Appl. Categ. 10 (2002), 392-409.

J. F. Kennisson, Spectra of finitly generated Boolean flow, Theory Appl. Categ. 16 (2006), 434-459.

A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Die Grundlehren der mathematischen Wissenschaften, vol. 166, Springer-Verlag, New York, 1971.

A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. No. 4, 1960. https://doi.org/10.1007/BF02684778

H. Stone,Applications of Boolean algebra to topology, Mat. Sb. 1 (1936), 765-772.

Win K. W. Yip, Quasi-homeomorphisms and lattice-equivalences of topological spaces, J. Austral. Math. Soc. 14 (1972), 41-44. https://doi.org/10.1017/S1446788700009617

Gierz G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge Univ, Press, 2003. https://doi.org/10.1017/CBO9780511542725

Downloads

Published

2015-10-01

How to Cite

[1]
A. Haouati and S. Lazaar, “Primal spaces and quasihomeomorphisms”, Appl. Gen. Topol., vol. 16, no. 2, pp. 109–118, Oct. 2015.

Issue

Section

Regular Articles